Faster proton transfer dynamics of water on SnO2 compared to TiO2
Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-01, Vol.134 (4), p.044706-044706 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044706 |
---|---|
container_issue | 4 |
container_start_page | 044706 |
container_title | The Journal of chemical physics |
container_volume | 134 |
creator | Kumar, Nitin Kent, Paul R C Bandura, Andrei V Kubicki, James D Wesolowski, David J Cole, David R Sofo, Jorge O |
description | Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates. |
doi_str_mv | 10.1063/1.3509386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1021969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>854374548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlYP_gFZvIiHrckmm49jKVaFQg_Wc0iys7jS3dQkRfrvTWn1NAzz8DLvg9AtwVOCOX0iU1pjRSU_Q2OCpSoFV_gcjTGuSKk45iN0FeMXxpiIil2iUUUqiYVkYzRbmJggFNvgkx-KFMwQ27w3-8H0nYuFb4sfcyDy9X1YVYXz_dYEaIrki3W3qq7RRWs2EW5Oc4I-Fs_r-Wu5XL28zWfL0lEhUukkAKFEYRCWcl4DaQ1zhMnW0hqYbSwByK82xmIHVknRcGaZq7lqhVItnaD7Y66PqdPRdQncp_PDAC5pkpsqrjL0cIRyn-8dxKT7LjrYbMwAfhe1rBkVrGYyk49H0gUfY4BWb0PXm7DPWfpgVRN9sprZu1PqzvbQ_JN_GukvyANwBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854374548</pqid></control><display><type>article</type><title>Faster proton transfer dynamics of water on SnO2 compared to TiO2</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kumar, Nitin ; Kent, Paul R C ; Bandura, Andrei V ; Kubicki, James D ; Wesolowski, David J ; Cole, David R ; Sofo, Jorge O</creator><creatorcontrib>Kumar, Nitin ; Kent, Paul R C ; Bandura, Andrei V ; Kubicki, James D ; Wesolowski, David J ; Cole, David R ; Sofo, Jorge O ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3509386</identifier><identifier>PMID: 21280784</identifier><language>eng</language><publisher>United States</publisher><subject>CHEMICAL BONDS ; CONTROL ; CORRELATIONS ; DENSITY FUNCTIONAL METHOD ; ELECTRONIC STRUCTURE ; ELECTROSTATICS ; HYDRATION ; INTERACTIONS ; LAYERS ; MOLECULAR DYNAMICS METHOD ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PROTONS ; REACTIVITY ; RUTILE ; SURFACES ; TIN OXIDES ; TITANIUM OXIDES ; WATER</subject><ispartof>The Journal of chemical physics, 2011-01, Vol.134 (4), p.044706-044706</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</citedby><cites>FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</cites><orcidid>0000000196561256 ; 0000000155394017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21280784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1021969$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Bandura, Andrei V</creatorcontrib><creatorcontrib>Kubicki, James D</creatorcontrib><creatorcontrib>Wesolowski, David J</creatorcontrib><creatorcontrib>Cole, David R</creatorcontrib><creatorcontrib>Sofo, Jorge O</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Faster proton transfer dynamics of water on SnO2 compared to TiO2</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.</description><subject>CHEMICAL BONDS</subject><subject>CONTROL</subject><subject>CORRELATIONS</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>ELECTRONIC STRUCTURE</subject><subject>ELECTROSTATICS</subject><subject>HYDRATION</subject><subject>INTERACTIONS</subject><subject>LAYERS</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PROTONS</subject><subject>REACTIVITY</subject><subject>RUTILE</subject><subject>SURFACES</subject><subject>TIN OXIDES</subject><subject>TITANIUM OXIDES</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlYP_gFZvIiHrckmm49jKVaFQg_Wc0iys7jS3dQkRfrvTWn1NAzz8DLvg9AtwVOCOX0iU1pjRSU_Q2OCpSoFV_gcjTGuSKk45iN0FeMXxpiIil2iUUUqiYVkYzRbmJggFNvgkx-KFMwQ27w3-8H0nYuFb4sfcyDy9X1YVYXz_dYEaIrki3W3qq7RRWs2EW5Oc4I-Fs_r-Wu5XL28zWfL0lEhUukkAKFEYRCWcl4DaQ1zhMnW0hqYbSwByK82xmIHVknRcGaZq7lqhVItnaD7Y66PqdPRdQncp_PDAC5pkpsqrjL0cIRyn-8dxKT7LjrYbMwAfhe1rBkVrGYyk49H0gUfY4BWb0PXm7DPWfpgVRN9sprZu1PqzvbQ_JN_GukvyANwBg</recordid><startdate>20110128</startdate><enddate>20110128</enddate><creator>Kumar, Nitin</creator><creator>Kent, Paul R C</creator><creator>Bandura, Andrei V</creator><creator>Kubicki, James D</creator><creator>Wesolowski, David J</creator><creator>Cole, David R</creator><creator>Sofo, Jorge O</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000196561256</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid></search><sort><creationdate>20110128</creationdate><title>Faster proton transfer dynamics of water on SnO2 compared to TiO2</title><author>Kumar, Nitin ; Kent, Paul R C ; Bandura, Andrei V ; Kubicki, James D ; Wesolowski, David J ; Cole, David R ; Sofo, Jorge O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CHEMICAL BONDS</topic><topic>CONTROL</topic><topic>CORRELATIONS</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>ELECTRONIC STRUCTURE</topic><topic>ELECTROSTATICS</topic><topic>HYDRATION</topic><topic>INTERACTIONS</topic><topic>LAYERS</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PROTONS</topic><topic>REACTIVITY</topic><topic>RUTILE</topic><topic>SURFACES</topic><topic>TIN OXIDES</topic><topic>TITANIUM OXIDES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Bandura, Andrei V</creatorcontrib><creatorcontrib>Kubicki, James D</creatorcontrib><creatorcontrib>Wesolowski, David J</creatorcontrib><creatorcontrib>Cole, David R</creatorcontrib><creatorcontrib>Sofo, Jorge O</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nitin</au><au>Kent, Paul R C</au><au>Bandura, Andrei V</au><au>Kubicki, James D</au><au>Wesolowski, David J</au><au>Cole, David R</au><au>Sofo, Jorge O</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster proton transfer dynamics of water on SnO2 compared to TiO2</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-01-28</date><risdate>2011</risdate><volume>134</volume><issue>4</issue><spage>044706</spage><epage>044706</epage><pages>044706-044706</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.</abstract><cop>United States</cop><pmid>21280784</pmid><doi>10.1063/1.3509386</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000196561256</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2011-01, Vol.134 (4), p.044706-044706 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1021969 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | CHEMICAL BONDS CONTROL CORRELATIONS DENSITY FUNCTIONAL METHOD ELECTRONIC STRUCTURE ELECTROSTATICS HYDRATION INTERACTIONS LAYERS MOLECULAR DYNAMICS METHOD PHYSICS OF ELEMENTARY PARTICLES AND FIELDS PROTONS REACTIVITY RUTILE SURFACES TIN OXIDES TITANIUM OXIDES WATER |
title | Faster proton transfer dynamics of water on SnO2 compared to TiO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20proton%20transfer%20dynamics%20of%20water%20on%20SnO2%20compared%20to%20TiO2&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kumar,%20Nitin&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-01-28&rft.volume=134&rft.issue=4&rft.spage=044706&rft.epage=044706&rft.pages=044706-044706&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3509386&rft_dat=%3Cproquest_osti_%3E854374548%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854374548&rft_id=info:pmid/21280784&rfr_iscdi=true |