Faster proton transfer dynamics of water on SnO2 compared to TiO2

Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-01, Vol.134 (4), p.044706-044706
Hauptverfasser: Kumar, Nitin, Kent, Paul R C, Bandura, Andrei V, Kubicki, James D, Wesolowski, David J, Cole, David R, Sofo, Jorge O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044706
container_issue 4
container_start_page 044706
container_title The Journal of chemical physics
container_volume 134
creator Kumar, Nitin
Kent, Paul R C
Bandura, Andrei V
Kubicki, James D
Wesolowski, David J
Cole, David R
Sofo, Jorge O
description Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.
doi_str_mv 10.1063/1.3509386
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1021969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>854374548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlYP_gFZvIiHrckmm49jKVaFQg_Wc0iys7jS3dQkRfrvTWn1NAzz8DLvg9AtwVOCOX0iU1pjRSU_Q2OCpSoFV_gcjTGuSKk45iN0FeMXxpiIil2iUUUqiYVkYzRbmJggFNvgkx-KFMwQ27w3-8H0nYuFb4sfcyDy9X1YVYXz_dYEaIrki3W3qq7RRWs2EW5Oc4I-Fs_r-Wu5XL28zWfL0lEhUukkAKFEYRCWcl4DaQ1zhMnW0hqYbSwByK82xmIHVknRcGaZq7lqhVItnaD7Y66PqdPRdQncp_PDAC5pkpsqrjL0cIRyn-8dxKT7LjrYbMwAfhe1rBkVrGYyk49H0gUfY4BWb0PXm7DPWfpgVRN9sprZu1PqzvbQ_JN_GukvyANwBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>854374548</pqid></control><display><type>article</type><title>Faster proton transfer dynamics of water on SnO2 compared to TiO2</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Kumar, Nitin ; Kent, Paul R C ; Bandura, Andrei V ; Kubicki, James D ; Wesolowski, David J ; Cole, David R ; Sofo, Jorge O</creator><creatorcontrib>Kumar, Nitin ; Kent, Paul R C ; Bandura, Andrei V ; Kubicki, James D ; Wesolowski, David J ; Cole, David R ; Sofo, Jorge O ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3509386</identifier><identifier>PMID: 21280784</identifier><language>eng</language><publisher>United States</publisher><subject>CHEMICAL BONDS ; CONTROL ; CORRELATIONS ; DENSITY FUNCTIONAL METHOD ; ELECTRONIC STRUCTURE ; ELECTROSTATICS ; HYDRATION ; INTERACTIONS ; LAYERS ; MOLECULAR DYNAMICS METHOD ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; PROTONS ; REACTIVITY ; RUTILE ; SURFACES ; TIN OXIDES ; TITANIUM OXIDES ; WATER</subject><ispartof>The Journal of chemical physics, 2011-01, Vol.134 (4), p.044706-044706</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</citedby><cites>FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</cites><orcidid>0000000196561256 ; 0000000155394017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21280784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1021969$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Bandura, Andrei V</creatorcontrib><creatorcontrib>Kubicki, James D</creatorcontrib><creatorcontrib>Wesolowski, David J</creatorcontrib><creatorcontrib>Cole, David R</creatorcontrib><creatorcontrib>Sofo, Jorge O</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Faster proton transfer dynamics of water on SnO2 compared to TiO2</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.</description><subject>CHEMICAL BONDS</subject><subject>CONTROL</subject><subject>CORRELATIONS</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>ELECTRONIC STRUCTURE</subject><subject>ELECTROSTATICS</subject><subject>HYDRATION</subject><subject>INTERACTIONS</subject><subject>LAYERS</subject><subject>MOLECULAR DYNAMICS METHOD</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>PROTONS</subject><subject>REACTIVITY</subject><subject>RUTILE</subject><subject>SURFACES</subject><subject>TIN OXIDES</subject><subject>TITANIUM OXIDES</subject><subject>WATER</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlYP_gFZvIiHrckmm49jKVaFQg_Wc0iys7jS3dQkRfrvTWn1NAzz8DLvg9AtwVOCOX0iU1pjRSU_Q2OCpSoFV_gcjTGuSKk45iN0FeMXxpiIil2iUUUqiYVkYzRbmJggFNvgkx-KFMwQ27w3-8H0nYuFb4sfcyDy9X1YVYXz_dYEaIrki3W3qq7RRWs2EW5Oc4I-Fs_r-Wu5XL28zWfL0lEhUukkAKFEYRCWcl4DaQ1zhMnW0hqYbSwByK82xmIHVknRcGaZq7lqhVItnaD7Y66PqdPRdQncp_PDAC5pkpsqrjL0cIRyn-8dxKT7LjrYbMwAfhe1rBkVrGYyk49H0gUfY4BWb0PXm7DPWfpgVRN9sprZu1PqzvbQ_JN_GukvyANwBg</recordid><startdate>20110128</startdate><enddate>20110128</enddate><creator>Kumar, Nitin</creator><creator>Kent, Paul R C</creator><creator>Bandura, Andrei V</creator><creator>Kubicki, James D</creator><creator>Wesolowski, David J</creator><creator>Cole, David R</creator><creator>Sofo, Jorge O</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000196561256</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid></search><sort><creationdate>20110128</creationdate><title>Faster proton transfer dynamics of water on SnO2 compared to TiO2</title><author>Kumar, Nitin ; Kent, Paul R C ; Bandura, Andrei V ; Kubicki, James D ; Wesolowski, David J ; Cole, David R ; Sofo, Jorge O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-c8ee13190e7b3665e1fa4c148fb35e4bdb1ee606dab0ceb987d64b4c569f799f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>CHEMICAL BONDS</topic><topic>CONTROL</topic><topic>CORRELATIONS</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>ELECTRONIC STRUCTURE</topic><topic>ELECTROSTATICS</topic><topic>HYDRATION</topic><topic>INTERACTIONS</topic><topic>LAYERS</topic><topic>MOLECULAR DYNAMICS METHOD</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>PROTONS</topic><topic>REACTIVITY</topic><topic>RUTILE</topic><topic>SURFACES</topic><topic>TIN OXIDES</topic><topic>TITANIUM OXIDES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Nitin</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Bandura, Andrei V</creatorcontrib><creatorcontrib>Kubicki, James D</creatorcontrib><creatorcontrib>Wesolowski, David J</creatorcontrib><creatorcontrib>Cole, David R</creatorcontrib><creatorcontrib>Sofo, Jorge O</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Nitin</au><au>Kent, Paul R C</au><au>Bandura, Andrei V</au><au>Kubicki, James D</au><au>Wesolowski, David J</au><au>Cole, David R</au><au>Sofo, Jorge O</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster proton transfer dynamics of water on SnO2 compared to TiO2</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-01-28</date><risdate>2011</risdate><volume>134</volume><issue>4</issue><spage>044706</spage><epage>044706</epage><pages>044706-044706</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.</abstract><cop>United States</cop><pmid>21280784</pmid><doi>10.1063/1.3509386</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000196561256</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2011-01, Vol.134 (4), p.044706-044706
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1021969
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects CHEMICAL BONDS
CONTROL
CORRELATIONS
DENSITY FUNCTIONAL METHOD
ELECTRONIC STRUCTURE
ELECTROSTATICS
HYDRATION
INTERACTIONS
LAYERS
MOLECULAR DYNAMICS METHOD
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
PROTONS
REACTIVITY
RUTILE
SURFACES
TIN OXIDES
TITANIUM OXIDES
WATER
title Faster proton transfer dynamics of water on SnO2 compared to TiO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20proton%20transfer%20dynamics%20of%20water%20on%20SnO2%20compared%20to%20TiO2&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kumar,%20Nitin&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-01-28&rft.volume=134&rft.issue=4&rft.spage=044706&rft.epage=044706&rft.pages=044706-044706&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3509386&rft_dat=%3Cproquest_osti_%3E854374548%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=854374548&rft_id=info:pmid/21280784&rfr_iscdi=true