Noise Properties of Rectifying Nanopores

Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-05, Vol.115 (17), p.8775-8783
Hauptverfasser: Powell, M. R, Sa, N, Davenport, M, Healy, K, Vlassiouk, I, Létant, S. E, Baker, L. A, Siwy, Z. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8783
container_issue 17
container_start_page 8775
container_title Journal of physical chemistry. C
container_volume 115
creator Powell, M. R
Sa, N
Davenport, M
Healy, K
Vlassiouk, I
Létant, S. E
Baker, L. A
Siwy, Z. S
description Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.
doi_str_mv 10.1021/jp2016038
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1021548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b954564321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqwX-wCIIeVvO1SXOUUm2hVBE9L9l0RrPoZknWQ_-90ZWePM0cHl7eGULOGb1hlLPbtueUKSpmB2TCjOClllV1uN-lPiYnKbWUVoIyMSFXm-ATFE8x9BAHD6kIWDyDGzzufPdWbGwX-hAhnZIjtB8Jzv7mlLzeL17my3L9-LCa361LKzgbSlcJFGBBobYWnGIG0HHBtTQWpG5AUswNNaDaGsMbhaAcMMG2DRrgXEzJxZgb0uDr5PwA7t2Frsud6p8TKznL6HpELoaUImDdR_9p4y6LX1Tv_5Dt5WitS3UbvmKX6__jvgH7qVsC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noise Properties of Rectifying Nanopores</title><source>American Chemical Society Journals</source><creator>Powell, M. R ; Sa, N ; Davenport, M ; Healy, K ; Vlassiouk, I ; Létant, S. E ; Baker, L. A ; Siwy, Z. S</creator><creatorcontrib>Powell, M. R ; Sa, N ; Davenport, M ; Healy, K ; Vlassiouk, I ; Létant, S. E ; Baker, L. A ; Siwy, Z. S ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2016038</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis ; DISSOCIATION ; ELECTRIC FIELDS ; GLASS ; MATERIALS SCIENCE ; NAVIER-STOKES EQUATIONS ; POLYMERS ; SILICON NITRIDES ; SIMULATION ; VORTICES ; WATER</subject><ispartof>Journal of physical chemistry. C, 2011-05, Vol.115 (17), p.8775-8783</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</citedby><cites>FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2016038$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2016038$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1021548$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, M. R</creatorcontrib><creatorcontrib>Sa, N</creatorcontrib><creatorcontrib>Davenport, M</creatorcontrib><creatorcontrib>Healy, K</creatorcontrib><creatorcontrib>Vlassiouk, I</creatorcontrib><creatorcontrib>Létant, S. E</creatorcontrib><creatorcontrib>Baker, L. A</creatorcontrib><creatorcontrib>Siwy, Z. S</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Noise Properties of Rectifying Nanopores</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><subject>DISSOCIATION</subject><subject>ELECTRIC FIELDS</subject><subject>GLASS</subject><subject>MATERIALS SCIENCE</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>POLYMERS</subject><subject>SILICON NITRIDES</subject><subject>SIMULATION</subject><subject>VORTICES</subject><subject>WATER</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqwX-wCIIeVvO1SXOUUm2hVBE9L9l0RrPoZknWQ_-90ZWePM0cHl7eGULOGb1hlLPbtueUKSpmB2TCjOClllV1uN-lPiYnKbWUVoIyMSFXm-ATFE8x9BAHD6kIWDyDGzzufPdWbGwX-hAhnZIjtB8Jzv7mlLzeL17my3L9-LCa361LKzgbSlcJFGBBobYWnGIG0HHBtTQWpG5AUswNNaDaGsMbhaAcMMG2DRrgXEzJxZgb0uDr5PwA7t2Frsud6p8TKznL6HpELoaUImDdR_9p4y6LX1Tv_5Dt5WitS3UbvmKX6__jvgH7qVsC</recordid><startdate>20110505</startdate><enddate>20110505</enddate><creator>Powell, M. R</creator><creator>Sa, N</creator><creator>Davenport, M</creator><creator>Healy, K</creator><creator>Vlassiouk, I</creator><creator>Létant, S. E</creator><creator>Baker, L. A</creator><creator>Siwy, Z. S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110505</creationdate><title>Noise Properties of Rectifying Nanopores</title><author>Powell, M. R ; Sa, N ; Davenport, M ; Healy, K ; Vlassiouk, I ; Létant, S. E ; Baker, L. A ; Siwy, Z. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><topic>DISSOCIATION</topic><topic>ELECTRIC FIELDS</topic><topic>GLASS</topic><topic>MATERIALS SCIENCE</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>POLYMERS</topic><topic>SILICON NITRIDES</topic><topic>SIMULATION</topic><topic>VORTICES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, M. R</creatorcontrib><creatorcontrib>Sa, N</creatorcontrib><creatorcontrib>Davenport, M</creatorcontrib><creatorcontrib>Healy, K</creatorcontrib><creatorcontrib>Vlassiouk, I</creatorcontrib><creatorcontrib>Létant, S. E</creatorcontrib><creatorcontrib>Baker, L. A</creatorcontrib><creatorcontrib>Siwy, Z. S</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, M. R</au><au>Sa, N</au><au>Davenport, M</au><au>Healy, K</au><au>Vlassiouk, I</au><au>Létant, S. E</au><au>Baker, L. A</au><au>Siwy, Z. S</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise Properties of Rectifying Nanopores</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-05-05</date><risdate>2011</risdate><volume>115</volume><issue>17</issue><spage>8775</spage><epage>8783</epage><pages>8775-8783</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp2016038</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2011-05, Vol.115 (17), p.8775-8783
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1021548
source American Chemical Society Journals
subjects C: Surfaces, Interfaces, Catalysis
DISSOCIATION
ELECTRIC FIELDS
GLASS
MATERIALS SCIENCE
NAVIER-STOKES EQUATIONS
POLYMERS
SILICON NITRIDES
SIMULATION
VORTICES
WATER
title Noise Properties of Rectifying Nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20Properties%20of%20Rectifying%20Nanopores&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Powell,%20M.%20R&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2011-05-05&rft.volume=115&rft.issue=17&rft.spage=8775&rft.epage=8783&rft.pages=8775-8783&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2016038&rft_dat=%3Cacs_osti_%3Eb954564321%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true