Noise Properties of Rectifying Nanopores
Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power s...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2011-05, Vol.115 (17), p.8775-8783 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8783 |
---|---|
container_issue | 17 |
container_start_page | 8775 |
container_title | Journal of physical chemistry. C |
container_volume | 115 |
creator | Powell, M. R Sa, N Davenport, M Healy, K Vlassiouk, I Létant, S. E Baker, L. A Siwy, Z. S |
description | Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation. |
doi_str_mv | 10.1021/jp2016038 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1021548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b954564321</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqwX-wCIIeVvO1SXOUUm2hVBE9L9l0RrPoZknWQ_-90ZWePM0cHl7eGULOGb1hlLPbtueUKSpmB2TCjOClllV1uN-lPiYnKbWUVoIyMSFXm-ATFE8x9BAHD6kIWDyDGzzufPdWbGwX-hAhnZIjtB8Jzv7mlLzeL17my3L9-LCa361LKzgbSlcJFGBBobYWnGIG0HHBtTQWpG5AUswNNaDaGsMbhaAcMMG2DRrgXEzJxZgb0uDr5PwA7t2Frsud6p8TKznL6HpELoaUImDdR_9p4y6LX1Tv_5Dt5WitS3UbvmKX6__jvgH7qVsC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noise Properties of Rectifying Nanopores</title><source>American Chemical Society Journals</source><creator>Powell, M. R ; Sa, N ; Davenport, M ; Healy, K ; Vlassiouk, I ; Létant, S. E ; Baker, L. A ; Siwy, Z. S</creator><creatorcontrib>Powell, M. R ; Sa, N ; Davenport, M ; Healy, K ; Vlassiouk, I ; Létant, S. E ; Baker, L. A ; Siwy, Z. S ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2016038</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis ; DISSOCIATION ; ELECTRIC FIELDS ; GLASS ; MATERIALS SCIENCE ; NAVIER-STOKES EQUATIONS ; POLYMERS ; SILICON NITRIDES ; SIMULATION ; VORTICES ; WATER</subject><ispartof>Journal of physical chemistry. C, 2011-05, Vol.115 (17), p.8775-8783</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</citedby><cites>FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2016038$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2016038$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1021548$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, M. R</creatorcontrib><creatorcontrib>Sa, N</creatorcontrib><creatorcontrib>Davenport, M</creatorcontrib><creatorcontrib>Healy, K</creatorcontrib><creatorcontrib>Vlassiouk, I</creatorcontrib><creatorcontrib>Létant, S. E</creatorcontrib><creatorcontrib>Baker, L. A</creatorcontrib><creatorcontrib>Siwy, Z. S</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Noise Properties of Rectifying Nanopores</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><subject>DISSOCIATION</subject><subject>ELECTRIC FIELDS</subject><subject>GLASS</subject><subject>MATERIALS SCIENCE</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>POLYMERS</subject><subject>SILICON NITRIDES</subject><subject>SIMULATION</subject><subject>VORTICES</subject><subject>WATER</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0E1LAzEQBuAgCtbqwX-wCIIeVvO1SXOUUm2hVBE9L9l0RrPoZknWQ_-90ZWePM0cHl7eGULOGb1hlLPbtueUKSpmB2TCjOClllV1uN-lPiYnKbWUVoIyMSFXm-ATFE8x9BAHD6kIWDyDGzzufPdWbGwX-hAhnZIjtB8Jzv7mlLzeL17my3L9-LCa361LKzgbSlcJFGBBobYWnGIG0HHBtTQWpG5AUswNNaDaGsMbhaAcMMG2DRrgXEzJxZgb0uDr5PwA7t2Frsud6p8TKznL6HpELoaUImDdR_9p4y6LX1Tv_5Dt5WitS3UbvmKX6__jvgH7qVsC</recordid><startdate>20110505</startdate><enddate>20110505</enddate><creator>Powell, M. R</creator><creator>Sa, N</creator><creator>Davenport, M</creator><creator>Healy, K</creator><creator>Vlassiouk, I</creator><creator>Létant, S. E</creator><creator>Baker, L. A</creator><creator>Siwy, Z. S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110505</creationdate><title>Noise Properties of Rectifying Nanopores</title><author>Powell, M. R ; Sa, N ; Davenport, M ; Healy, K ; Vlassiouk, I ; Létant, S. E ; Baker, L. A ; Siwy, Z. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-c53f3eae6f7aaec619efc232749ae47be40f2017ef6d992b6fe6ce131dbf9e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><topic>DISSOCIATION</topic><topic>ELECTRIC FIELDS</topic><topic>GLASS</topic><topic>MATERIALS SCIENCE</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>POLYMERS</topic><topic>SILICON NITRIDES</topic><topic>SIMULATION</topic><topic>VORTICES</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, M. R</creatorcontrib><creatorcontrib>Sa, N</creatorcontrib><creatorcontrib>Davenport, M</creatorcontrib><creatorcontrib>Healy, K</creatorcontrib><creatorcontrib>Vlassiouk, I</creatorcontrib><creatorcontrib>Létant, S. E</creatorcontrib><creatorcontrib>Baker, L. A</creatorcontrib><creatorcontrib>Siwy, Z. S</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, M. R</au><au>Sa, N</au><au>Davenport, M</au><au>Healy, K</au><au>Vlassiouk, I</au><au>Létant, S. E</au><au>Baker, L. A</au><au>Siwy, Z. S</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise Properties of Rectifying Nanopores</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-05-05</date><risdate>2011</risdate><volume>115</volume><issue>17</issue><spage>8775</spage><epage>8783</epage><pages>8775-8783</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson−Nernst−Planck and Navier−Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp2016038</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2011-05, Vol.115 (17), p.8775-8783 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1021548 |
source | American Chemical Society Journals |
subjects | C: Surfaces, Interfaces, Catalysis DISSOCIATION ELECTRIC FIELDS GLASS MATERIALS SCIENCE NAVIER-STOKES EQUATIONS POLYMERS SILICON NITRIDES SIMULATION VORTICES WATER |
title | Noise Properties of Rectifying Nanopores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20Properties%20of%20Rectifying%20Nanopores&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Powell,%20M.%20R&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2011-05-05&rft.volume=115&rft.issue=17&rft.spage=8775&rft.epage=8783&rft.pages=8775-8783&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2016038&rft_dat=%3Cacs_osti_%3Eb954564321%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |