Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity

ABSTRACT Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2010-01, Vol.24 (1), p.242-252
Hauptverfasser: Wu, Xiaoai, Ye, Sheng, Guo, Shuyuan, Yan, Wupeng, Bartlam, Mark, Rao, Zihe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 1
container_start_page 242
container_title The FASEB journal
container_volume 24
creator Wu, Xiaoai
Ye, Sheng
Guo, Shuyuan
Yan, Wupeng
Bartlam, Mark
Rao, Zihe
description ABSTRACT Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 A, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand‐free protomer in a ligand‐bound dimer opens more widely than the protomers in a ligand‐free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand‐free protomer in a ligand‐bound dimer should be relayed from the ligand‐binding‐induced allostery of its adjacent protomer. Mutations that weaken the inter‐protomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase.—Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB J. 24, 242–252 (2010). www.fasebj.org
doi_str_mv 10.1096/fj.09-140194
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1020165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734221181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4624-e268bd75f8c02c241270eb62b08813c942aac4225ac786c6d45725ac660940f3</originalsourceid><addsrcrecordid>eNp9kUuP0zAQgC0EYkvhxhlZXLiQZew4jn2EFeWhlTjs3i1n6rQuiR3sBNR_j6tU4sZpHvr0jWaGkNcMbhlo-aE_3YKumACmxROyYU0NlVQSnpINKM0rKWt1Q17kfAIABkw-JzdMt6puldiQ8DCnBecl2YF2NvtM-5iopcmhn1JEO_twoKPDow0-jzT2NLhD6f52FGOcXLrkfj5TH-jejy55pNMx5uloDy7Qnz7Y7KjFlXpJnvV2yO7VNW7J4-7z493X6v7Hl293H-8rFJKLynGpun3b9AqBIxeMt-A6yTtQitWoBbcWBeeNxVZJlHvRtJdCStAC-npL3q7amGdvMvq5LIAxBIezYcDLFZoCvVuhsuevxeXZjD6jGwYbXFyyaesygbEycEverySmmHNyvZmSH206F5e5PMH0JwParE8o-JureOlGt_8HX69eALUCf_zgzv-Vmd3DJ777Dvrq_gvRlJOj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734221181</pqid></control><display><type>article</type><title>Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Wu, Xiaoai ; Ye, Sheng ; Guo, Shuyuan ; Yan, Wupeng ; Bartlam, Mark ; Rao, Zihe</creator><creatorcontrib>Wu, Xiaoai ; Ye, Sheng ; Guo, Shuyuan ; Yan, Wupeng ; Bartlam, Mark ; Rao, Zihe ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>ABSTRACT Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 A, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand‐free protomer in a ligand‐bound dimer opens more widely than the protomers in a ligand‐free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand‐free protomer in a ligand‐bound dimer should be relayed from the ligand‐binding‐induced allostery of its adjacent protomer. Mutations that weaken the inter‐protomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase.—Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB J. 24, 242–252 (2010). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.09-140194</identifier><identifier>PMID: 19783784</identifier><language>eng</language><publisher>United States</publisher><subject>Adenylyl Imidodiphosphate - chemistry ; Adenylyl Imidodiphosphate - metabolism ; Amino Acid Sequence ; Animals ; ARGININE ; arginine kinase ; Arginine Kinase - chemistry ; Arginine Kinase - genetics ; Arginine Kinase - metabolism ; BASIC BIOLOGICAL SCIENCES ; Catalytic Domain - genetics ; CREATINE ; creatine kinase ; Creatine Kinase - chemistry ; Creatine Kinase - metabolism ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; Dimerization ; DIMERS ; energy metabolism ; ENZYMES ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Humans ; In Vitro Techniques ; Kinetics ; Ligands ; METABOLISM ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; MUTATIONS ; national synchrotron light source ; PHOSPHOTRANSFERASES ; Phosphotransferases (Nitrogenous Group Acceptor) - chemistry ; Phosphotransferases (Nitrogenous Group Acceptor) - genetics ; Phosphotransferases (Nitrogenous Group Acceptor) - metabolism ; Protein Structure, Quaternary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sea Cucumbers - enzymology ; Sea Cucumbers - genetics ; Sequence Deletion ; Sequence Homology, Amino Acid ; Static Electricity</subject><ispartof>The FASEB journal, 2010-01, Vol.24 (1), p.242-252</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4624-e268bd75f8c02c241270eb62b08813c942aac4225ac786c6d45725ac660940f3</citedby><cites>FETCH-LOGICAL-c4624-e268bd75f8c02c241270eb62b08813c942aac4225ac786c6d45725ac660940f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.09-140194$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.09-140194$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19783784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1020165$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiaoai</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Guo, Shuyuan</creatorcontrib><creatorcontrib>Yan, Wupeng</creatorcontrib><creatorcontrib>Bartlam, Mark</creatorcontrib><creatorcontrib>Rao, Zihe</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 A, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand‐free protomer in a ligand‐bound dimer opens more widely than the protomers in a ligand‐free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand‐free protomer in a ligand‐bound dimer should be relayed from the ligand‐binding‐induced allostery of its adjacent protomer. Mutations that weaken the inter‐protomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase.—Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB J. 24, 242–252 (2010). www.fasebj.org</description><subject>Adenylyl Imidodiphosphate - chemistry</subject><subject>Adenylyl Imidodiphosphate - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>ARGININE</subject><subject>arginine kinase</subject><subject>Arginine Kinase - chemistry</subject><subject>Arginine Kinase - genetics</subject><subject>Arginine Kinase - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Catalytic Domain - genetics</subject><subject>CREATINE</subject><subject>creatine kinase</subject><subject>Creatine Kinase - chemistry</subject><subject>Creatine Kinase - metabolism</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>DIMERS</subject><subject>energy metabolism</subject><subject>ENZYMES</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>METABOLISM</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>MUTATIONS</subject><subject>national synchrotron light source</subject><subject>PHOSPHOTRANSFERASES</subject><subject>Phosphotransferases (Nitrogenous Group Acceptor) - chemistry</subject><subject>Phosphotransferases (Nitrogenous Group Acceptor) - genetics</subject><subject>Phosphotransferases (Nitrogenous Group Acceptor) - metabolism</subject><subject>Protein Structure, Quaternary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sea Cucumbers - enzymology</subject><subject>Sea Cucumbers - genetics</subject><subject>Sequence Deletion</subject><subject>Sequence Homology, Amino Acid</subject><subject>Static Electricity</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuP0zAQgC0EYkvhxhlZXLiQZew4jn2EFeWhlTjs3i1n6rQuiR3sBNR_j6tU4sZpHvr0jWaGkNcMbhlo-aE_3YKumACmxROyYU0NlVQSnpINKM0rKWt1Q17kfAIABkw-JzdMt6puldiQ8DCnBecl2YF2NvtM-5iopcmhn1JEO_twoKPDow0-jzT2NLhD6f52FGOcXLrkfj5TH-jejy55pNMx5uloDy7Qnz7Y7KjFlXpJnvV2yO7VNW7J4-7z493X6v7Hl293H-8rFJKLynGpun3b9AqBIxeMt-A6yTtQitWoBbcWBeeNxVZJlHvRtJdCStAC-npL3q7amGdvMvq5LIAxBIezYcDLFZoCvVuhsuevxeXZjD6jGwYbXFyyaesygbEycEverySmmHNyvZmSH206F5e5PMH0JwParE8o-JureOlGt_8HX69eALUCf_zgzv-Vmd3DJ777Dvrq_gvRlJOj</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Wu, Xiaoai</creator><creator>Ye, Sheng</creator><creator>Guo, Shuyuan</creator><creator>Yan, Wupeng</creator><creator>Bartlam, Mark</creator><creator>Rao, Zihe</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201001</creationdate><title>Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity</title><author>Wu, Xiaoai ; Ye, Sheng ; Guo, Shuyuan ; Yan, Wupeng ; Bartlam, Mark ; Rao, Zihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4624-e268bd75f8c02c241270eb62b08813c942aac4225ac786c6d45725ac660940f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adenylyl Imidodiphosphate - chemistry</topic><topic>Adenylyl Imidodiphosphate - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>ARGININE</topic><topic>arginine kinase</topic><topic>Arginine Kinase - chemistry</topic><topic>Arginine Kinase - genetics</topic><topic>Arginine Kinase - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Catalytic Domain - genetics</topic><topic>CREATINE</topic><topic>creatine kinase</topic><topic>Creatine Kinase - chemistry</topic><topic>Creatine Kinase - metabolism</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>DIMERS</topic><topic>energy metabolism</topic><topic>ENZYMES</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>METABOLISM</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>MUTATIONS</topic><topic>national synchrotron light source</topic><topic>PHOSPHOTRANSFERASES</topic><topic>Phosphotransferases (Nitrogenous Group Acceptor) - chemistry</topic><topic>Phosphotransferases (Nitrogenous Group Acceptor) - genetics</topic><topic>Phosphotransferases (Nitrogenous Group Acceptor) - metabolism</topic><topic>Protein Structure, Quaternary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sea Cucumbers - enzymology</topic><topic>Sea Cucumbers - genetics</topic><topic>Sequence Deletion</topic><topic>Sequence Homology, Amino Acid</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaoai</creatorcontrib><creatorcontrib>Ye, Sheng</creatorcontrib><creatorcontrib>Guo, Shuyuan</creatorcontrib><creatorcontrib>Yan, Wupeng</creatorcontrib><creatorcontrib>Bartlam, Mark</creatorcontrib><creatorcontrib>Rao, Zihe</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaoai</au><au>Ye, Sheng</au><au>Guo, Shuyuan</au><au>Yan, Wupeng</au><au>Bartlam, Mark</au><au>Rao, Zihe</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2010-01</date><risdate>2010</risdate><volume>24</volume><issue>1</issue><spage>242</spage><epage>252</epage><pages>242-252</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 A, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand‐free protomer in a ligand‐bound dimer opens more widely than the protomers in a ligand‐free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand‐free protomer in a ligand‐bound dimer should be relayed from the ligand‐binding‐induced allostery of its adjacent protomer. Mutations that weaken the inter‐protomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase.—Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity. FASEB J. 24, 242–252 (2010). www.fasebj.org</abstract><cop>United States</cop><pmid>19783784</pmid><doi>10.1096/fj.09-140194</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2010-01, Vol.24 (1), p.242-252
issn 0892-6638
1530-6860
language eng
recordid cdi_osti_scitechconnect_1020165
source MEDLINE; Access via Wiley Online Library; Alma/SFX Local Collection
subjects Adenylyl Imidodiphosphate - chemistry
Adenylyl Imidodiphosphate - metabolism
Amino Acid Sequence
Animals
ARGININE
arginine kinase
Arginine Kinase - chemistry
Arginine Kinase - genetics
Arginine Kinase - metabolism
BASIC BIOLOGICAL SCIENCES
Catalytic Domain - genetics
CREATINE
creatine kinase
Creatine Kinase - chemistry
Creatine Kinase - metabolism
CRYSTAL STRUCTURE
Crystallography, X-Ray
Dimerization
DIMERS
energy metabolism
ENZYMES
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Humans
In Vitro Techniques
Kinetics
Ligands
METABOLISM
Models, Molecular
Molecular Sequence Data
Mutagenesis
MUTATIONS
national synchrotron light source
PHOSPHOTRANSFERASES
Phosphotransferases (Nitrogenous Group Acceptor) - chemistry
Phosphotransferases (Nitrogenous Group Acceptor) - genetics
Phosphotransferases (Nitrogenous Group Acceptor) - metabolism
Protein Structure, Quaternary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sea Cucumbers - enzymology
Sea Cucumbers - genetics
Sequence Deletion
Sequence Homology, Amino Acid
Static Electricity
title Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20a%20reciprocating%20mechanism%20of%20negative%20cooperativity%20in%20dimeric%20phosphagen%20kinase%20activity&rft.jtitle=The%20FASEB%20journal&rft.au=Wu,%20Xiaoai&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2010-01&rft.volume=24&rft.issue=1&rft.spage=242&rft.epage=252&rft.pages=242-252&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.09-140194&rft_dat=%3Cproquest_osti_%3E734221181%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734221181&rft_id=info:pmid/19783784&rfr_iscdi=true