Recent advances in high-growth rate single-crystal CVD diamond

There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2009-05, Vol.18 (5), p.698-703
Hauptverfasser: Liang, Qi, Yan, Chih-shiue, Meng, Yufei, Lai, Joseph, Krasnicki, Szczesny, Mao, Ho-kwang, Hemley, Russell J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 5
container_start_page 698
container_title Diamond and related materials
container_volume 18
creator Liang, Qi
Yan, Chih-shiue
Meng, Yufei
Lai, Joseph
Krasnicki, Szczesny
Mao, Ho-kwang
Hemley, Russell J.
description There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m 1/2 in comparison to 5–10 MPa m 1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.
doi_str_mv 10.1016/j.diamond.2008.12.002
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1019615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963508005888</els_id><sourcerecordid>34521270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QSiC3rUmp0vb3CgyP2EgiHobztLTLaNrNckm-_dmbHjrVW6e875vHsbOBc8EF8X1IqstLvuuzoDzKhOQcQ4HbCCqUqWcF3DIBlyBTFWRy2N24v2CcwFqJAbs5o0MdSHBeo2dIZ_YLpnb2Tyduf4nzBOHgRJvu1lLqXEbH7BNxp_3yb7xlB012Ho6279D9vH48D5-TievTy_ju0lqclWGtCnrChRCzgFGAKhqICG5wRJNHFjwYipz04hqKqVAiRWnEkakBBpRQFnnQ3axy-19sNobG8jMTd91ZIKOElQhZISudtCX679X5INeWm-obbGjfuV1PpIgoOQRlDvQuN57R43-cnaJbhOjtmmFXuj9B_VWqRago9J4d7kvQG-wbVxUZv3fMYhK5iWoyN3uOIpK1pbcdjFFvbV128F1b_9p-gX04ozU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34521270</pqid></control><display><type>article</type><title>Recent advances in high-growth rate single-crystal CVD diamond</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liang, Qi ; Yan, Chih-shiue ; Meng, Yufei ; Lai, Joseph ; Krasnicki, Szczesny ; Mao, Ho-kwang ; Hemley, Russell J.</creator><creatorcontrib>Liang, Qi ; Yan, Chih-shiue ; Meng, Yufei ; Lai, Joseph ; Krasnicki, Szczesny ; Mao, Ho-kwang ; Hemley, Russell J. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m 1/2 in comparison to 5–10 MPa m 1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and &lt; 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2008.12.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ANNEALING ; CHEMICAL VAPOR DEPOSITION ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; CHEMISTRY ; Cross-disciplinary physics: materials science; rheology ; CVD ; DEFECTS ; DIAMONDS ; DIFFRACTION ; Exact sciences and technology ; FRACTURE PROPERTIES ; Fullerenes and related materials; diamonds, graphite ; GRAPHITIZATION ; High growth rate ; Homoepitaxial ; Ion and electron beam-assisted deposition; ion plating ; MATERIALS SCIENCE ; Methods of deposition of films and coatings; film growth and epitaxy ; MONOCRYSTALS ; national synchrotron light source ; PHOTOLUMINESCENCE ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PLASMA ; Plasma applications ; Plasma-based ion implantation and deposition ; Single-crystal diamond ; Specific materials ; SPECTRA ; SUBSTRATES ; THICKNESS</subject><ispartof>Diamond and related materials, 2009-05, Vol.18 (5), p.698-703</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</citedby><cites>FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2008.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,310,311,315,781,785,790,791,886,3551,23932,23933,25142,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21853729$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1019615$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Qi</creatorcontrib><creatorcontrib>Yan, Chih-shiue</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Lai, Joseph</creatorcontrib><creatorcontrib>Krasnicki, Szczesny</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Recent advances in high-growth rate single-crystal CVD diamond</title><title>Diamond and related materials</title><description>There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m 1/2 in comparison to 5–10 MPa m 1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and &lt; 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.</description><subject>ANNEALING</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>CHEMISTRY</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CVD</subject><subject>DEFECTS</subject><subject>DIAMONDS</subject><subject>DIFFRACTION</subject><subject>Exact sciences and technology</subject><subject>FRACTURE PROPERTIES</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>GRAPHITIZATION</subject><subject>High growth rate</subject><subject>Homoepitaxial</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>MATERIALS SCIENCE</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>MONOCRYSTALS</subject><subject>national synchrotron light source</subject><subject>PHOTOLUMINESCENCE</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PLASMA</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Single-crystal diamond</subject><subject>Specific materials</subject><subject>SPECTRA</subject><subject>SUBSTRATES</subject><subject>THICKNESS</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QSiC3rUmp0vb3CgyP2EgiHobztLTLaNrNckm-_dmbHjrVW6e875vHsbOBc8EF8X1IqstLvuuzoDzKhOQcQ4HbCCqUqWcF3DIBlyBTFWRy2N24v2CcwFqJAbs5o0MdSHBeo2dIZ_YLpnb2Tyduf4nzBOHgRJvu1lLqXEbH7BNxp_3yb7xlB012Ho6279D9vH48D5-TievTy_ju0lqclWGtCnrChRCzgFGAKhqICG5wRJNHFjwYipz04hqKqVAiRWnEkakBBpRQFnnQ3axy-19sNobG8jMTd91ZIKOElQhZISudtCX679X5INeWm-obbGjfuV1PpIgoOQRlDvQuN57R43-cnaJbhOjtmmFXuj9B_VWqRago9J4d7kvQG-wbVxUZv3fMYhK5iWoyN3uOIpK1pbcdjFFvbV128F1b_9p-gX04ozU</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Liang, Qi</creator><creator>Yan, Chih-shiue</creator><creator>Meng, Yufei</creator><creator>Lai, Joseph</creator><creator>Krasnicki, Szczesny</creator><creator>Mao, Ho-kwang</creator><creator>Hemley, Russell J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20090501</creationdate><title>Recent advances in high-growth rate single-crystal CVD diamond</title><author>Liang, Qi ; Yan, Chih-shiue ; Meng, Yufei ; Lai, Joseph ; Krasnicki, Szczesny ; Mao, Ho-kwang ; Hemley, Russell J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANNEALING</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>CHEMISTRY</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CVD</topic><topic>DEFECTS</topic><topic>DIAMONDS</topic><topic>DIFFRACTION</topic><topic>Exact sciences and technology</topic><topic>FRACTURE PROPERTIES</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>GRAPHITIZATION</topic><topic>High growth rate</topic><topic>Homoepitaxial</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>MATERIALS SCIENCE</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>MONOCRYSTALS</topic><topic>national synchrotron light source</topic><topic>PHOTOLUMINESCENCE</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PLASMA</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Single-crystal diamond</topic><topic>Specific materials</topic><topic>SPECTRA</topic><topic>SUBSTRATES</topic><topic>THICKNESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Qi</creatorcontrib><creatorcontrib>Yan, Chih-shiue</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Lai, Joseph</creatorcontrib><creatorcontrib>Krasnicki, Szczesny</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Qi</au><au>Yan, Chih-shiue</au><au>Meng, Yufei</au><au>Lai, Joseph</au><au>Krasnicki, Szczesny</au><au>Mao, Ho-kwang</au><au>Hemley, Russell J.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in high-growth rate single-crystal CVD diamond</atitle><jtitle>Diamond and related materials</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>18</volume><issue>5</issue><spage>698</spage><epage>703</epage><pages>698-703</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m 1/2 in comparison to 5–10 MPa m 1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and &lt; 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2008.12.002</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2009-05, Vol.18 (5), p.698-703
issn 0925-9635
1879-0062
language eng
recordid cdi_osti_scitechconnect_1019615
source Access via ScienceDirect (Elsevier)
subjects ANNEALING
CHEMICAL VAPOR DEPOSITION
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
CHEMISTRY
Cross-disciplinary physics: materials science
rheology
CVD
DEFECTS
DIAMONDS
DIFFRACTION
Exact sciences and technology
FRACTURE PROPERTIES
Fullerenes and related materials
diamonds, graphite
GRAPHITIZATION
High growth rate
Homoepitaxial
Ion and electron beam-assisted deposition
ion plating
MATERIALS SCIENCE
Methods of deposition of films and coatings
film growth and epitaxy
MONOCRYSTALS
national synchrotron light source
PHOTOLUMINESCENCE
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
PLASMA
Plasma applications
Plasma-based ion implantation and deposition
Single-crystal diamond
Specific materials
SPECTRA
SUBSTRATES
THICKNESS
title Recent advances in high-growth rate single-crystal CVD diamond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20high-growth%20rate%20single-crystal%20CVD%20diamond&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Liang,%20Qi&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2009-05-01&rft.volume=18&rft.issue=5&rft.spage=698&rft.epage=703&rft.pages=698-703&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2008.12.002&rft_dat=%3Cproquest_osti_%3E34521270%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34521270&rft_id=info:pmid/&rft_els_id=S0925963508005888&rfr_iscdi=true