Recent advances in high-growth rate single-crystal CVD diamond
There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperature...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2009-05, Vol.18 (5), p.698-703 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 703 |
---|---|
container_issue | 5 |
container_start_page | 698 |
container_title | Diamond and related materials |
container_volume | 18 |
creator | Liang, Qi Yan, Chih-shiue Meng, Yufei Lai, Joseph Krasnicki, Szczesny Mao, Ho-kwang Hemley, Russell J. |
description | There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m
1/2 in comparison to 5–10 MPa m
1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and <
300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects. |
doi_str_mv | 10.1016/j.diamond.2008.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1019615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963508005888</els_id><sourcerecordid>34521270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QSiC3rUmp0vb3CgyP2EgiHobztLTLaNrNckm-_dmbHjrVW6e875vHsbOBc8EF8X1IqstLvuuzoDzKhOQcQ4HbCCqUqWcF3DIBlyBTFWRy2N24v2CcwFqJAbs5o0MdSHBeo2dIZ_YLpnb2Tyduf4nzBOHgRJvu1lLqXEbH7BNxp_3yb7xlB012Ho6279D9vH48D5-TievTy_ju0lqclWGtCnrChRCzgFGAKhqICG5wRJNHFjwYipz04hqKqVAiRWnEkakBBpRQFnnQ3axy-19sNobG8jMTd91ZIKOElQhZISudtCX679X5INeWm-obbGjfuV1PpIgoOQRlDvQuN57R43-cnaJbhOjtmmFXuj9B_VWqRago9J4d7kvQG-wbVxUZv3fMYhK5iWoyN3uOIpK1pbcdjFFvbV128F1b_9p-gX04ozU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34521270</pqid></control><display><type>article</type><title>Recent advances in high-growth rate single-crystal CVD diamond</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liang, Qi ; Yan, Chih-shiue ; Meng, Yufei ; Lai, Joseph ; Krasnicki, Szczesny ; Mao, Ho-kwang ; Hemley, Russell J.</creator><creatorcontrib>Liang, Qi ; Yan, Chih-shiue ; Meng, Yufei ; Lai, Joseph ; Krasnicki, Szczesny ; Mao, Ho-kwang ; Hemley, Russell J. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m
1/2 in comparison to 5–10 MPa m
1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and <
300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2008.12.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ANNEALING ; CHEMICAL VAPOR DEPOSITION ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; CHEMISTRY ; Cross-disciplinary physics: materials science; rheology ; CVD ; DEFECTS ; DIAMONDS ; DIFFRACTION ; Exact sciences and technology ; FRACTURE PROPERTIES ; Fullerenes and related materials; diamonds, graphite ; GRAPHITIZATION ; High growth rate ; Homoepitaxial ; Ion and electron beam-assisted deposition; ion plating ; MATERIALS SCIENCE ; Methods of deposition of films and coatings; film growth and epitaxy ; MONOCRYSTALS ; national synchrotron light source ; PHOTOLUMINESCENCE ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; PLASMA ; Plasma applications ; Plasma-based ion implantation and deposition ; Single-crystal diamond ; Specific materials ; SPECTRA ; SUBSTRATES ; THICKNESS</subject><ispartof>Diamond and related materials, 2009-05, Vol.18 (5), p.698-703</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</citedby><cites>FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.diamond.2008.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,310,311,315,781,785,790,791,886,3551,23932,23933,25142,27926,27927,45997</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21853729$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1019615$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Qi</creatorcontrib><creatorcontrib>Yan, Chih-shiue</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Lai, Joseph</creatorcontrib><creatorcontrib>Krasnicki, Szczesny</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>Recent advances in high-growth rate single-crystal CVD diamond</title><title>Diamond and related materials</title><description>There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m
1/2 in comparison to 5–10 MPa m
1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and <
300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.</description><subject>ANNEALING</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>CHEMISTRY</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>CVD</subject><subject>DEFECTS</subject><subject>DIAMONDS</subject><subject>DIFFRACTION</subject><subject>Exact sciences and technology</subject><subject>FRACTURE PROPERTIES</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>GRAPHITIZATION</subject><subject>High growth rate</subject><subject>Homoepitaxial</subject><subject>Ion and electron beam-assisted deposition; ion plating</subject><subject>MATERIALS SCIENCE</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>MONOCRYSTALS</subject><subject>national synchrotron light source</subject><subject>PHOTOLUMINESCENCE</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>PLASMA</subject><subject>Plasma applications</subject><subject>Plasma-based ion implantation and deposition</subject><subject>Single-crystal diamond</subject><subject>Specific materials</subject><subject>SPECTRA</subject><subject>SUBSTRATES</subject><subject>THICKNESS</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_QSiC3rUmp0vb3CgyP2EgiHobztLTLaNrNckm-_dmbHjrVW6e875vHsbOBc8EF8X1IqstLvuuzoDzKhOQcQ4HbCCqUqWcF3DIBlyBTFWRy2N24v2CcwFqJAbs5o0MdSHBeo2dIZ_YLpnb2Tyduf4nzBOHgRJvu1lLqXEbH7BNxp_3yb7xlB012Ho6279D9vH48D5-TievTy_ju0lqclWGtCnrChRCzgFGAKhqICG5wRJNHFjwYipz04hqKqVAiRWnEkakBBpRQFnnQ3axy-19sNobG8jMTd91ZIKOElQhZISudtCX679X5INeWm-obbGjfuV1PpIgoOQRlDvQuN57R43-cnaJbhOjtmmFXuj9B_VWqRago9J4d7kvQG-wbVxUZv3fMYhK5iWoyN3uOIpK1pbcdjFFvbV128F1b_9p-gX04ozU</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Liang, Qi</creator><creator>Yan, Chih-shiue</creator><creator>Meng, Yufei</creator><creator>Lai, Joseph</creator><creator>Krasnicki, Szczesny</creator><creator>Mao, Ho-kwang</creator><creator>Hemley, Russell J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20090501</creationdate><title>Recent advances in high-growth rate single-crystal CVD diamond</title><author>Liang, Qi ; Yan, Chih-shiue ; Meng, Yufei ; Lai, Joseph ; Krasnicki, Szczesny ; Mao, Ho-kwang ; Hemley, Russell J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-f7d829a23022422a9d2e150ca7ac006606b53cf18b551a5a80e724e91ac1627d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ANNEALING</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>CHEMISTRY</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>CVD</topic><topic>DEFECTS</topic><topic>DIAMONDS</topic><topic>DIFFRACTION</topic><topic>Exact sciences and technology</topic><topic>FRACTURE PROPERTIES</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>GRAPHITIZATION</topic><topic>High growth rate</topic><topic>Homoepitaxial</topic><topic>Ion and electron beam-assisted deposition; ion plating</topic><topic>MATERIALS SCIENCE</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>MONOCRYSTALS</topic><topic>national synchrotron light source</topic><topic>PHOTOLUMINESCENCE</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>PLASMA</topic><topic>Plasma applications</topic><topic>Plasma-based ion implantation and deposition</topic><topic>Single-crystal diamond</topic><topic>Specific materials</topic><topic>SPECTRA</topic><topic>SUBSTRATES</topic><topic>THICKNESS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Qi</creatorcontrib><creatorcontrib>Yan, Chih-shiue</creatorcontrib><creatorcontrib>Meng, Yufei</creatorcontrib><creatorcontrib>Lai, Joseph</creatorcontrib><creatorcontrib>Krasnicki, Szczesny</creatorcontrib><creatorcontrib>Mao, Ho-kwang</creatorcontrib><creatorcontrib>Hemley, Russell J.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Qi</au><au>Yan, Chih-shiue</au><au>Meng, Yufei</au><au>Lai, Joseph</au><au>Krasnicki, Szczesny</au><au>Mao, Ho-kwang</au><au>Hemley, Russell J.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances in high-growth rate single-crystal CVD diamond</atitle><jtitle>Diamond and related materials</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>18</volume><issue>5</issue><spage>698</spage><epage>703</epage><pages>698-703</pages><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50–100 μm/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m
1/2 in comparison to 5–10 MPa m
1/2 for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 °C and <
300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2008.12.002</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2009-05, Vol.18 (5), p.698-703 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_osti_scitechconnect_1019615 |
source | Access via ScienceDirect (Elsevier) |
subjects | ANNEALING CHEMICAL VAPOR DEPOSITION Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) CHEMISTRY Cross-disciplinary physics: materials science rheology CVD DEFECTS DIAMONDS DIFFRACTION Exact sciences and technology FRACTURE PROPERTIES Fullerenes and related materials diamonds, graphite GRAPHITIZATION High growth rate Homoepitaxial Ion and electron beam-assisted deposition ion plating MATERIALS SCIENCE Methods of deposition of films and coatings film growth and epitaxy MONOCRYSTALS national synchrotron light source PHOTOLUMINESCENCE Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges PLASMA Plasma applications Plasma-based ion implantation and deposition Single-crystal diamond Specific materials SPECTRA SUBSTRATES THICKNESS |
title | Recent advances in high-growth rate single-crystal CVD diamond |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20in%20high-growth%20rate%20single-crystal%20CVD%20diamond&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Liang,%20Qi&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2009-05-01&rft.volume=18&rft.issue=5&rft.spage=698&rft.epage=703&rft.pages=698-703&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2008.12.002&rft_dat=%3Cproquest_osti_%3E34521270%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34521270&rft_id=info:pmid/&rft_els_id=S0925963508005888&rfr_iscdi=true |