Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures

► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750 °C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-07, Vol.196 (13), p.5599-5603
Hauptverfasser: Milhans, J., Li, D.S., Khaleel, M., Sun, X., Al-Haik, Marwan S., Harris, Adrian, Garmestani, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5603
container_issue 13
container_start_page 5599
container_title Journal of power sources
container_volume 196
creator Milhans, J.
Li, D.S.
Khaleel, M.
Sun, X.
Al-Haik, Marwan S.
Harris, Adrian
Garmestani, H.
description ► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750 °C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging. Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4 h or 100 h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750 °C, using loading rates of 5 mN s −1 and 25 mN s −1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4 h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.
doi_str_mv 10.1016/j.jpowsour.2011.02.033
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1012512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311003983</els_id><sourcerecordid>1777116095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</originalsourceid><addsrcrecordid>eNqFkU9v1DAUxC0EEkvhKyCrUlUuCf4Tx84NVEGLVMSF9mo5zkvXq2y89XMKfHscbcuxnN7lN280M4S856zmjLcfd_XuEH9hXFItGOc1EzWT8gXZcKNlJbRSL8mGSW0qrZV8Td4g7hgrpGYbcvsd_NbNwbuJHlI8QMoBkMaRYpzCQOPvMAAdF5ioh2mid5NDrDwktw-eIhSZy3Qb7rY0w77IXV4S4FvyanQTwrvHe0Juvn75eXFVXf-4_Hbx-bryjWxyNTpQzAsxqGYYxrZ3vNUdl71WgxG-M96AklK6zjS9kF3fS9UDeMUVdEpzJU_I6fFvxBws-pBLHB_nGXy2pR2huCjQ-REqAe8XwGz3Adc0boa4oDWGteVbywr54VmSa615AbvVuT2iPkXEBKM9pLB36U-xXZ1bu7NPu9h1F8uELbsU4dmjh8PS-pjc7AP-U4uGKyUNL9ynIwelv4cAaY0Hs4chpDXdEMP_rP4Cf8ym8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777116095</pqid></control><display><type>article</type><title>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Milhans, J. ; Li, D.S. ; Khaleel, M. ; Sun, X. ; Al-Haik, Marwan S. ; Harris, Adrian ; Garmestani, H.</creator><creatorcontrib>Milhans, J. ; Li, D.S. ; Khaleel, M. ; Sun, X. ; Al-Haik, Marwan S. ; Harris, Adrian ; Garmestani, H. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750 °C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging. Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4 h or 100 h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750 °C, using loading rates of 5 mN s −1 and 25 mN s −1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4 h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.02.033</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>30 DIRECT ENERGY CONVERSION ; AGING ; Applied sciences ; CREEP ; Creep (materials) ; Crystallinity ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; GLASS ; Glass ceramics ; Glass-ceramic ; HARDNESS ; High-temperature ; LOADING RATE ; MECHANICAL PROPERTIES ; Nanoindentation ; Seals ; solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties ; SOLID OXIDE FUEL CELLS ; TRANSITION TEMPERATURE</subject><ispartof>Journal of power sources, 2011-07, Vol.196 (13), p.5599-5603</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</citedby><cites>FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2011.02.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24155381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1012512$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Milhans, J.</creatorcontrib><creatorcontrib>Li, D.S.</creatorcontrib><creatorcontrib>Khaleel, M.</creatorcontrib><creatorcontrib>Sun, X.</creatorcontrib><creatorcontrib>Al-Haik, Marwan S.</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Garmestani, H.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</title><title>Journal of power sources</title><description>► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750 °C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging. Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4 h or 100 h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750 °C, using loading rates of 5 mN s −1 and 25 mN s −1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4 h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>AGING</subject><subject>Applied sciences</subject><subject>CREEP</subject><subject>Creep (materials)</subject><subject>Crystallinity</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>GLASS</subject><subject>Glass ceramics</subject><subject>Glass-ceramic</subject><subject>HARDNESS</subject><subject>High-temperature</subject><subject>LOADING RATE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Nanoindentation</subject><subject>Seals</subject><subject>solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties</subject><subject>SOLID OXIDE FUEL CELLS</subject><subject>TRANSITION TEMPERATURE</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAUxC0EEkvhKyCrUlUuCf4Tx84NVEGLVMSF9mo5zkvXq2y89XMKfHscbcuxnN7lN280M4S856zmjLcfd_XuEH9hXFItGOc1EzWT8gXZcKNlJbRSL8mGSW0qrZV8Td4g7hgrpGYbcvsd_NbNwbuJHlI8QMoBkMaRYpzCQOPvMAAdF5ioh2mid5NDrDwktw-eIhSZy3Qb7rY0w77IXV4S4FvyanQTwrvHe0Juvn75eXFVXf-4_Hbx-bryjWxyNTpQzAsxqGYYxrZ3vNUdl71WgxG-M96AklK6zjS9kF3fS9UDeMUVdEpzJU_I6fFvxBws-pBLHB_nGXy2pR2huCjQ-REqAe8XwGz3Adc0boa4oDWGteVbywr54VmSa615AbvVuT2iPkXEBKM9pLB36U-xXZ1bu7NPu9h1F8uELbsU4dmjh8PS-pjc7AP-U4uGKyUNL9ynIwelv4cAaY0Hs4chpDXdEMP_rP4Cf8ym8A</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Milhans, J.</creator><creator>Li, D.S.</creator><creator>Khaleel, M.</creator><creator>Sun, X.</creator><creator>Al-Haik, Marwan S.</creator><creator>Harris, Adrian</creator><creator>Garmestani, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20110701</creationdate><title>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</title><author>Milhans, J. ; Li, D.S. ; Khaleel, M. ; Sun, X. ; Al-Haik, Marwan S. ; Harris, Adrian ; Garmestani, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>AGING</topic><topic>Applied sciences</topic><topic>CREEP</topic><topic>Creep (materials)</topic><topic>Crystallinity</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>GLASS</topic><topic>Glass ceramics</topic><topic>Glass-ceramic</topic><topic>HARDNESS</topic><topic>High-temperature</topic><topic>LOADING RATE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Nanoindentation</topic><topic>Seals</topic><topic>solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties</topic><topic>SOLID OXIDE FUEL CELLS</topic><topic>TRANSITION TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milhans, J.</creatorcontrib><creatorcontrib>Li, D.S.</creatorcontrib><creatorcontrib>Khaleel, M.</creatorcontrib><creatorcontrib>Sun, X.</creatorcontrib><creatorcontrib>Al-Haik, Marwan S.</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Garmestani, H.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milhans, J.</au><au>Li, D.S.</au><au>Khaleel, M.</au><au>Sun, X.</au><au>Al-Haik, Marwan S.</au><au>Harris, Adrian</au><au>Garmestani, H.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</atitle><jtitle>Journal of power sources</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>196</volume><issue>13</issue><spage>5599</spage><epage>5603</epage><pages>5599-5603</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750 °C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging. Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4 h or 100 h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750 °C, using loading rates of 5 mN s −1 and 25 mN s −1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4 h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2011.02.033</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011-07, Vol.196 (13), p.5599-5603
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_1012512
source ScienceDirect Journals (5 years ago - present)
subjects 30 DIRECT ENERGY CONVERSION
AGING
Applied sciences
CREEP
Creep (materials)
Crystallinity
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
GLASS
Glass ceramics
Glass-ceramic
HARDNESS
High-temperature
LOADING RATE
MECHANICAL PROPERTIES
Nanoindentation
Seals
solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties
SOLID OXIDE FUEL CELLS
TRANSITION TEMPERATURE
title Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20solid%20oxide%20fuel%20cell%20glass-ceramic%20seal%20at%20high%20temperatures&rft.jtitle=Journal%20of%20power%20sources&rft.au=Milhans,%20J.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2011-07-01&rft.volume=196&rft.issue=13&rft.spage=5599&rft.epage=5603&rft.pages=5599-5603&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2011.02.033&rft_dat=%3Cproquest_osti_%3E1777116095%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777116095&rft_id=info:pmid/&rft_els_id=S0378775311003983&rfr_iscdi=true