Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures
► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750 °C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2011-07, Vol.196 (13), p.5599-5603 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5603 |
---|---|
container_issue | 13 |
container_start_page | 5599 |
container_title | Journal of power sources |
container_volume | 196 |
creator | Milhans, J. Li, D.S. Khaleel, M. Sun, X. Al-Haik, Marwan S. Harris, Adrian Garmestani, H. |
description | ► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750
°C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging.
Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4
h or 100
h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750
°C, using loading rates of 5
mN
s
−1 and 25
mN
s
−1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4
h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging. |
doi_str_mv | 10.1016/j.jpowsour.2011.02.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1012512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775311003983</els_id><sourcerecordid>1777116095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</originalsourceid><addsrcrecordid>eNqFkU9v1DAUxC0EEkvhKyCrUlUuCf4Tx84NVEGLVMSF9mo5zkvXq2y89XMKfHscbcuxnN7lN280M4S856zmjLcfd_XuEH9hXFItGOc1EzWT8gXZcKNlJbRSL8mGSW0qrZV8Td4g7hgrpGYbcvsd_NbNwbuJHlI8QMoBkMaRYpzCQOPvMAAdF5ioh2mid5NDrDwktw-eIhSZy3Qb7rY0w77IXV4S4FvyanQTwrvHe0Juvn75eXFVXf-4_Hbx-bryjWxyNTpQzAsxqGYYxrZ3vNUdl71WgxG-M96AklK6zjS9kF3fS9UDeMUVdEpzJU_I6fFvxBws-pBLHB_nGXy2pR2huCjQ-REqAe8XwGz3Adc0boa4oDWGteVbywr54VmSa615AbvVuT2iPkXEBKM9pLB36U-xXZ1bu7NPu9h1F8uELbsU4dmjh8PS-pjc7AP-U4uGKyUNL9ynIwelv4cAaY0Hs4chpDXdEMP_rP4Cf8ym8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777116095</pqid></control><display><type>article</type><title>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Milhans, J. ; Li, D.S. ; Khaleel, M. ; Sun, X. ; Al-Haik, Marwan S. ; Harris, Adrian ; Garmestani, H.</creator><creatorcontrib>Milhans, J. ; Li, D.S. ; Khaleel, M. ; Sun, X. ; Al-Haik, Marwan S. ; Harris, Adrian ; Garmestani, H. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750
°C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging.
Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4
h or 100
h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750
°C, using loading rates of 5
mN
s
−1 and 25
mN
s
−1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4
h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2011.02.033</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>30 DIRECT ENERGY CONVERSION ; AGING ; Applied sciences ; CREEP ; Creep (materials) ; Crystallinity ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; GLASS ; Glass ceramics ; Glass-ceramic ; HARDNESS ; High-temperature ; LOADING RATE ; MECHANICAL PROPERTIES ; Nanoindentation ; Seals ; solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties ; SOLID OXIDE FUEL CELLS ; TRANSITION TEMPERATURE</subject><ispartof>Journal of power sources, 2011-07, Vol.196 (13), p.5599-5603</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</citedby><cites>FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2011.02.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24155381$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1012512$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Milhans, J.</creatorcontrib><creatorcontrib>Li, D.S.</creatorcontrib><creatorcontrib>Khaleel, M.</creatorcontrib><creatorcontrib>Sun, X.</creatorcontrib><creatorcontrib>Al-Haik, Marwan S.</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Garmestani, H.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</title><title>Journal of power sources</title><description>► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750
°C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging.
Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4
h or 100
h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750
°C, using loading rates of 5
mN
s
−1 and 25
mN
s
−1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4
h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>AGING</subject><subject>Applied sciences</subject><subject>CREEP</subject><subject>Creep (materials)</subject><subject>Crystallinity</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>GLASS</subject><subject>Glass ceramics</subject><subject>Glass-ceramic</subject><subject>HARDNESS</subject><subject>High-temperature</subject><subject>LOADING RATE</subject><subject>MECHANICAL PROPERTIES</subject><subject>Nanoindentation</subject><subject>Seals</subject><subject>solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties</subject><subject>SOLID OXIDE FUEL CELLS</subject><subject>TRANSITION TEMPERATURE</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAUxC0EEkvhKyCrUlUuCf4Tx84NVEGLVMSF9mo5zkvXq2y89XMKfHscbcuxnN7lN280M4S856zmjLcfd_XuEH9hXFItGOc1EzWT8gXZcKNlJbRSL8mGSW0qrZV8Td4g7hgrpGYbcvsd_NbNwbuJHlI8QMoBkMaRYpzCQOPvMAAdF5ioh2mid5NDrDwktw-eIhSZy3Qb7rY0w77IXV4S4FvyanQTwrvHe0Juvn75eXFVXf-4_Hbx-bryjWxyNTpQzAsxqGYYxrZ3vNUdl71WgxG-M96AklK6zjS9kF3fS9UDeMUVdEpzJU_I6fFvxBws-pBLHB_nGXy2pR2huCjQ-REqAe8XwGz3Adc0boa4oDWGteVbywr54VmSa615AbvVuT2iPkXEBKM9pLB36U-xXZ1bu7NPu9h1F8uELbsU4dmjh8PS-pjc7AP-U4uGKyUNL9ynIwelv4cAaY0Hs4chpDXdEMP_rP4Cf8ym8A</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Milhans, J.</creator><creator>Li, D.S.</creator><creator>Khaleel, M.</creator><creator>Sun, X.</creator><creator>Al-Haik, Marwan S.</creator><creator>Harris, Adrian</creator><creator>Garmestani, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20110701</creationdate><title>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</title><author>Milhans, J. ; Li, D.S. ; Khaleel, M. ; Sun, X. ; Al-Haik, Marwan S. ; Harris, Adrian ; Garmestani, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-fae50c22d54ddf6ba167913b75d82c98c8e5333a984b239bb35beec515e957153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>AGING</topic><topic>Applied sciences</topic><topic>CREEP</topic><topic>Creep (materials)</topic><topic>Crystallinity</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>GLASS</topic><topic>Glass ceramics</topic><topic>Glass-ceramic</topic><topic>HARDNESS</topic><topic>High-temperature</topic><topic>LOADING RATE</topic><topic>MECHANICAL PROPERTIES</topic><topic>Nanoindentation</topic><topic>Seals</topic><topic>solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties</topic><topic>SOLID OXIDE FUEL CELLS</topic><topic>TRANSITION TEMPERATURE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milhans, J.</creatorcontrib><creatorcontrib>Li, D.S.</creatorcontrib><creatorcontrib>Khaleel, M.</creatorcontrib><creatorcontrib>Sun, X.</creatorcontrib><creatorcontrib>Al-Haik, Marwan S.</creatorcontrib><creatorcontrib>Harris, Adrian</creatorcontrib><creatorcontrib>Garmestani, H.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milhans, J.</au><au>Li, D.S.</au><au>Khaleel, M.</au><au>Sun, X.</au><au>Al-Haik, Marwan S.</au><au>Harris, Adrian</au><au>Garmestani, H.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures</atitle><jtitle>Journal of power sources</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>196</volume><issue>13</issue><spage>5599</spage><epage>5603</epage><pages>5599-5603</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>► Glass-ceramic SOFC seal material is characterized using high temperature nanoindentation. ► Aging of the glass-ceramic seal material is varied. ► Test temperatures include 25, 550, 650, and 750
°C. ► Results show decrease in reduced modulus and hardness with increasing temperature. ► Results show decrease in creep after longer aging.
Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4
h or 100
h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750
°C, using loading rates of 5
mN
s
−1 and 25
mN
s
−1. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4
h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2011.02.033</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2011-07, Vol.196 (13), p.5599-5603 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_osti_scitechconnect_1012512 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 30 DIRECT ENERGY CONVERSION AGING Applied sciences CREEP Creep (materials) Crystallinity Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells GLASS Glass ceramics Glass-ceramic HARDNESS High-temperature LOADING RATE MECHANICAL PROPERTIES Nanoindentation Seals solid oxide fuel cell, sealant, nanoindentation, high temperature, mechanical properties SOLID OXIDE FUEL CELLS TRANSITION TEMPERATURE |
title | Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20solid%20oxide%20fuel%20cell%20glass-ceramic%20seal%20at%20high%20temperatures&rft.jtitle=Journal%20of%20power%20sources&rft.au=Milhans,%20J.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2011-07-01&rft.volume=196&rft.issue=13&rft.spage=5599&rft.epage=5603&rft.pages=5599-5603&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2011.02.033&rft_dat=%3Cproquest_osti_%3E1777116095%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777116095&rft_id=info:pmid/&rft_els_id=S0378775311003983&rfr_iscdi=true |