Lensless X-ray imaging in reflection geometry

Lensless X-ray imaging techniques such as coherent diffraction imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and ptychography 9 , 10 , 11 , and Fourier transform holography 12 , 13 , 14 , 15 , 16 , 17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2011-04, Vol.5 (4), p.243-245
Hauptverfasser: Roy, S., Parks, D., Seu, K. A., Su, R., Turner, J. J., Chao, W., Anderson, E. H., Cabrini, S., Kevan, S. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 4
container_start_page 243
container_title Nature photonics
container_volume 5
creator Roy, S.
Parks, D.
Seu, K. A.
Su, R.
Turner, J. J.
Chao, W.
Anderson, E. H.
Cabrini, S.
Kevan, S. D.
description Lensless X-ray imaging techniques such as coherent diffraction imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and ptychography 9 , 10 , 11 , and Fourier transform holography 12 , 13 , 14 , 15 , 16 , 17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal. Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.
doi_str_mv 10.1038/nphoton.2011.11
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1012364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880668731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws0YsTGl9dhw7I6r4kiqxgMRmJeaSukrtYqdD_3tcpWonprvh997de4TcA50B5Wrutis_eDdjFGAGcEEmIIsqL1TFL0-7EtfkJsY1pYJXjE1IvkQXe4wx-85Dvc_spu6s6zLrsoBtj2aw3mUd-g0OYX9Lrtq6j3h3nFPy9fL8uXjLlx-v74unZW4KWg25VE1VYyNUIUGUTdtyaQDEj6TUMCmMkiC5LGtBpSwb1jIjRMtQVbJAU9Qtn5KH0dfHwepo7IBmZbxz6R8NFBgviwQ9jtA2-N8dxkFvbDTY97VDv4taKVqWSnI4253Itd8FlxJoJRkoAFYlaD5CJvgYU3i9DamNsE8H9aFhfWxYHxrWcLCloyIm0nUYzrb_Sf4ABsp-Ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872181129</pqid></control><display><type>article</type><title>Lensless X-ray imaging in reflection geometry</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Roy, S. ; Parks, D. ; Seu, K. A. ; Su, R. ; Turner, J. J. ; Chao, W. ; Anderson, E. H. ; Cabrini, S. ; Kevan, S. D.</creator><creatorcontrib>Roy, S. ; Parks, D. ; Seu, K. A. ; Su, R. ; Turner, J. J. ; Chao, W. ; Anderson, E. H. ; Cabrini, S. ; Kevan, S. D. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Lensless X-ray imaging techniques such as coherent diffraction imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and ptychography 9 , 10 , 11 , and Fourier transform holography 12 , 13 , 14 , 15 , 16 , 17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal. Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2011.11</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107/510 ; 639/624/400/1021 ; 639/624/400/1106 ; Applied and Technical Physics ; Devices ; DIFFRACTION ; FIELD EFFECT TRANSISTORS ; Fourier transforms ; GEOMETRY ; HOLOGRAPHY ; Imaging ; letter ; Masking ; MATERIALS SCIENCE ; MONOCRYSTALS ; Nanostructure ; Photovoltaics ; Physics ; Physics and Astronomy ; Quantum Physics ; REFLECTION ; SCATTERING ; THIN FILMS ; X-rays</subject><ispartof>Nature photonics, 2011-04, Vol.5 (4), p.243-245</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</citedby><cites>FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1012364$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Parks, D.</creatorcontrib><creatorcontrib>Seu, K. A.</creatorcontrib><creatorcontrib>Su, R.</creatorcontrib><creatorcontrib>Turner, J. J.</creatorcontrib><creatorcontrib>Chao, W.</creatorcontrib><creatorcontrib>Anderson, E. H.</creatorcontrib><creatorcontrib>Cabrini, S.</creatorcontrib><creatorcontrib>Kevan, S. D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Lensless X-ray imaging in reflection geometry</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Lensless X-ray imaging techniques such as coherent diffraction imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and ptychography 9 , 10 , 11 , and Fourier transform holography 12 , 13 , 14 , 15 , 16 , 17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal. Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.</description><subject>639/624/1107/510</subject><subject>639/624/400/1021</subject><subject>639/624/400/1106</subject><subject>Applied and Technical Physics</subject><subject>Devices</subject><subject>DIFFRACTION</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>Fourier transforms</subject><subject>GEOMETRY</subject><subject>HOLOGRAPHY</subject><subject>Imaging</subject><subject>letter</subject><subject>Masking</subject><subject>MATERIALS SCIENCE</subject><subject>MONOCRYSTALS</subject><subject>Nanostructure</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>REFLECTION</subject><subject>SCATTERING</subject><subject>THIN FILMS</subject><subject>X-rays</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws0YsTGl9dhw7I6r4kiqxgMRmJeaSukrtYqdD_3tcpWonprvh997de4TcA50B5Wrutis_eDdjFGAGcEEmIIsqL1TFL0-7EtfkJsY1pYJXjE1IvkQXe4wx-85Dvc_spu6s6zLrsoBtj2aw3mUd-g0OYX9Lrtq6j3h3nFPy9fL8uXjLlx-v74unZW4KWg25VE1VYyNUIUGUTdtyaQDEj6TUMCmMkiC5LGtBpSwb1jIjRMtQVbJAU9Qtn5KH0dfHwepo7IBmZbxz6R8NFBgviwQ9jtA2-N8dxkFvbDTY97VDv4taKVqWSnI4253Itd8FlxJoJRkoAFYlaD5CJvgYU3i9DamNsE8H9aFhfWxYHxrWcLCloyIm0nUYzrb_Sf4ABsp-Ug</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Roy, S.</creator><creator>Parks, D.</creator><creator>Seu, K. A.</creator><creator>Su, R.</creator><creator>Turner, J. J.</creator><creator>Chao, W.</creator><creator>Anderson, E. H.</creator><creator>Cabrini, S.</creator><creator>Kevan, S. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>Lensless X-ray imaging in reflection geometry</title><author>Roy, S. ; Parks, D. ; Seu, K. A. ; Su, R. ; Turner, J. J. ; Chao, W. ; Anderson, E. H. ; Cabrini, S. ; Kevan, S. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/624/1107/510</topic><topic>639/624/400/1021</topic><topic>639/624/400/1106</topic><topic>Applied and Technical Physics</topic><topic>Devices</topic><topic>DIFFRACTION</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>Fourier transforms</topic><topic>GEOMETRY</topic><topic>HOLOGRAPHY</topic><topic>Imaging</topic><topic>letter</topic><topic>Masking</topic><topic>MATERIALS SCIENCE</topic><topic>MONOCRYSTALS</topic><topic>Nanostructure</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>REFLECTION</topic><topic>SCATTERING</topic><topic>THIN FILMS</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Parks, D.</creatorcontrib><creatorcontrib>Seu, K. A.</creatorcontrib><creatorcontrib>Su, R.</creatorcontrib><creatorcontrib>Turner, J. J.</creatorcontrib><creatorcontrib>Chao, W.</creatorcontrib><creatorcontrib>Anderson, E. H.</creatorcontrib><creatorcontrib>Cabrini, S.</creatorcontrib><creatorcontrib>Kevan, S. D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, S.</au><au>Parks, D.</au><au>Seu, K. A.</au><au>Su, R.</au><au>Turner, J. J.</au><au>Chao, W.</au><au>Anderson, E. H.</au><au>Cabrini, S.</au><au>Kevan, S. D.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lensless X-ray imaging in reflection geometry</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>5</volume><issue>4</issue><spage>243</spage><epage>245</epage><pages>243-245</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Lensless X-ray imaging techniques such as coherent diffraction imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and ptychography 9 , 10 , 11 , and Fourier transform holography 12 , 13 , 14 , 15 , 16 , 17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal. Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2011.11</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2011-04, Vol.5 (4), p.243-245
issn 1749-4885
1749-4893
language eng
recordid cdi_osti_scitechconnect_1012364
source Nature; Alma/SFX Local Collection
subjects 639/624/1107/510
639/624/400/1021
639/624/400/1106
Applied and Technical Physics
Devices
DIFFRACTION
FIELD EFFECT TRANSISTORS
Fourier transforms
GEOMETRY
HOLOGRAPHY
Imaging
letter
Masking
MATERIALS SCIENCE
MONOCRYSTALS
Nanostructure
Photovoltaics
Physics
Physics and Astronomy
Quantum Physics
REFLECTION
SCATTERING
THIN FILMS
X-rays
title Lensless X-ray imaging in reflection geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lensless%20X-ray%20imaging%20in%20reflection%20geometry&rft.jtitle=Nature%20photonics&rft.au=Roy,%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-04-01&rft.volume=5&rft.issue=4&rft.spage=243&rft.epage=245&rft.pages=243-245&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2011.11&rft_dat=%3Cproquest_osti_%3E880668731%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872181129&rft_id=info:pmid/&rfr_iscdi=true