Lensless X-ray imaging in reflection geometry
Lensless X-ray imaging techniques such as coherent diffraction imaging 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and ptychography 9 , 10 , 11 , and Fourier transform holography 12 , 13 , 14 , 15 , 16 , 17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2011-04, Vol.5 (4), p.243-245 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 4 |
container_start_page | 243 |
container_title | Nature photonics |
container_volume | 5 |
creator | Roy, S. Parks, D. Seu, K. A. Su, R. Turner, J. J. Chao, W. Anderson, E. H. Cabrini, S. Kevan, S. D. |
description | Lensless X-ray imaging techniques such as coherent diffraction imaging
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
and ptychography
9
,
10
,
11
, and Fourier transform holography
12
,
13
,
14
,
15
,
16
,
17
can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal. |
doi_str_mv | 10.1038/nphoton.2011.11 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1012364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880668731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqUws0YsTGl9dhw7I6r4kiqxgMRmJeaSukrtYqdD_3tcpWonprvh997de4TcA50B5Wrutis_eDdjFGAGcEEmIIsqL1TFL0-7EtfkJsY1pYJXjE1IvkQXe4wx-85Dvc_spu6s6zLrsoBtj2aw3mUd-g0OYX9Lrtq6j3h3nFPy9fL8uXjLlx-v74unZW4KWg25VE1VYyNUIUGUTdtyaQDEj6TUMCmMkiC5LGtBpSwb1jIjRMtQVbJAU9Qtn5KH0dfHwepo7IBmZbxz6R8NFBgviwQ9jtA2-N8dxkFvbDTY97VDv4taKVqWSnI4253Itd8FlxJoJRkoAFYlaD5CJvgYU3i9DamNsE8H9aFhfWxYHxrWcLCloyIm0nUYzrb_Sf4ABsp-Ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872181129</pqid></control><display><type>article</type><title>Lensless X-ray imaging in reflection geometry</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Roy, S. ; Parks, D. ; Seu, K. A. ; Su, R. ; Turner, J. J. ; Chao, W. ; Anderson, E. H. ; Cabrini, S. ; Kevan, S. D.</creator><creatorcontrib>Roy, S. ; Parks, D. ; Seu, K. A. ; Su, R. ; Turner, J. J. ; Chao, W. ; Anderson, E. H. ; Cabrini, S. ; Kevan, S. D. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Lensless X-ray imaging techniques such as coherent diffraction imaging
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
and ptychography
9
,
10
,
11
, and Fourier transform holography
12
,
13
,
14
,
15
,
16
,
17
can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2011.11</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1107/510 ; 639/624/400/1021 ; 639/624/400/1106 ; Applied and Technical Physics ; Devices ; DIFFRACTION ; FIELD EFFECT TRANSISTORS ; Fourier transforms ; GEOMETRY ; HOLOGRAPHY ; Imaging ; letter ; Masking ; MATERIALS SCIENCE ; MONOCRYSTALS ; Nanostructure ; Photovoltaics ; Physics ; Physics and Astronomy ; Quantum Physics ; REFLECTION ; SCATTERING ; THIN FILMS ; X-rays</subject><ispartof>Nature photonics, 2011-04, Vol.5 (4), p.243-245</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</citedby><cites>FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1012364$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Parks, D.</creatorcontrib><creatorcontrib>Seu, K. A.</creatorcontrib><creatorcontrib>Su, R.</creatorcontrib><creatorcontrib>Turner, J. J.</creatorcontrib><creatorcontrib>Chao, W.</creatorcontrib><creatorcontrib>Anderson, E. H.</creatorcontrib><creatorcontrib>Cabrini, S.</creatorcontrib><creatorcontrib>Kevan, S. D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Lensless X-ray imaging in reflection geometry</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Lensless X-ray imaging techniques such as coherent diffraction imaging
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
and ptychography
9
,
10
,
11
, and Fourier transform holography
12
,
13
,
14
,
15
,
16
,
17
can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.</description><subject>639/624/1107/510</subject><subject>639/624/400/1021</subject><subject>639/624/400/1106</subject><subject>Applied and Technical Physics</subject><subject>Devices</subject><subject>DIFFRACTION</subject><subject>FIELD EFFECT TRANSISTORS</subject><subject>Fourier transforms</subject><subject>GEOMETRY</subject><subject>HOLOGRAPHY</subject><subject>Imaging</subject><subject>letter</subject><subject>Masking</subject><subject>MATERIALS SCIENCE</subject><subject>MONOCRYSTALS</subject><subject>Nanostructure</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>REFLECTION</subject><subject>SCATTERING</subject><subject>THIN FILMS</subject><subject>X-rays</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kL1PwzAQxS0EEqUws0YsTGl9dhw7I6r4kiqxgMRmJeaSukrtYqdD_3tcpWonprvh997de4TcA50B5Wrutis_eDdjFGAGcEEmIIsqL1TFL0-7EtfkJsY1pYJXjE1IvkQXe4wx-85Dvc_spu6s6zLrsoBtj2aw3mUd-g0OYX9Lrtq6j3h3nFPy9fL8uXjLlx-v74unZW4KWg25VE1VYyNUIUGUTdtyaQDEj6TUMCmMkiC5LGtBpSwb1jIjRMtQVbJAU9Qtn5KH0dfHwepo7IBmZbxz6R8NFBgviwQ9jtA2-N8dxkFvbDTY97VDv4taKVqWSnI4253Itd8FlxJoJRkoAFYlaD5CJvgYU3i9DamNsE8H9aFhfWxYHxrWcLCloyIm0nUYzrb_Sf4ABsp-Ug</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Roy, S.</creator><creator>Parks, D.</creator><creator>Seu, K. A.</creator><creator>Su, R.</creator><creator>Turner, J. J.</creator><creator>Chao, W.</creator><creator>Anderson, E. H.</creator><creator>Cabrini, S.</creator><creator>Kevan, S. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110401</creationdate><title>Lensless X-ray imaging in reflection geometry</title><author>Roy, S. ; Parks, D. ; Seu, K. A. ; Su, R. ; Turner, J. J. ; Chao, W. ; Anderson, E. H. ; Cabrini, S. ; Kevan, S. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-78b9aeb5847156bff37c115d700c275c8717376a50776b2f2c55f2e8974ec4af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/624/1107/510</topic><topic>639/624/400/1021</topic><topic>639/624/400/1106</topic><topic>Applied and Technical Physics</topic><topic>Devices</topic><topic>DIFFRACTION</topic><topic>FIELD EFFECT TRANSISTORS</topic><topic>Fourier transforms</topic><topic>GEOMETRY</topic><topic>HOLOGRAPHY</topic><topic>Imaging</topic><topic>letter</topic><topic>Masking</topic><topic>MATERIALS SCIENCE</topic><topic>MONOCRYSTALS</topic><topic>Nanostructure</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>REFLECTION</topic><topic>SCATTERING</topic><topic>THIN FILMS</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Parks, D.</creatorcontrib><creatorcontrib>Seu, K. A.</creatorcontrib><creatorcontrib>Su, R.</creatorcontrib><creatorcontrib>Turner, J. J.</creatorcontrib><creatorcontrib>Chao, W.</creatorcontrib><creatorcontrib>Anderson, E. H.</creatorcontrib><creatorcontrib>Cabrini, S.</creatorcontrib><creatorcontrib>Kevan, S. D.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, S.</au><au>Parks, D.</au><au>Seu, K. A.</au><au>Su, R.</au><au>Turner, J. J.</au><au>Chao, W.</au><au>Anderson, E. H.</au><au>Cabrini, S.</au><au>Kevan, S. D.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lensless X-ray imaging in reflection geometry</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2011-04-01</date><risdate>2011</risdate><volume>5</volume><issue>4</issue><spage>243</spage><epage>245</epage><pages>243-245</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Lensless X-ray imaging techniques such as coherent diffraction imaging
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
and ptychography
9
,
10
,
11
, and Fourier transform holography
12
,
13
,
14
,
15
,
16
,
17
can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
Many X-ray imaging techniques require transmission geometries, which place severe restrictions on the samples being imaged. Here, a reflection geometry lensless X-ray imaging method is demonstrated. This technique may allow single-shot imaging of surfaces and films such as organic photovoltaic materials and field-effect transistor devices, or Bragg planes in a single crystal.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2011.11</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2011-04, Vol.5 (4), p.243-245 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_osti_scitechconnect_1012364 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/1107/510 639/624/400/1021 639/624/400/1106 Applied and Technical Physics Devices DIFFRACTION FIELD EFFECT TRANSISTORS Fourier transforms GEOMETRY HOLOGRAPHY Imaging letter Masking MATERIALS SCIENCE MONOCRYSTALS Nanostructure Photovoltaics Physics Physics and Astronomy Quantum Physics REFLECTION SCATTERING THIN FILMS X-rays |
title | Lensless X-ray imaging in reflection geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lensless%20X-ray%20imaging%20in%20reflection%20geometry&rft.jtitle=Nature%20photonics&rft.au=Roy,%20S.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-04-01&rft.volume=5&rft.issue=4&rft.spage=243&rft.epage=245&rft.pages=243-245&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2011.11&rft_dat=%3Cproquest_osti_%3E880668731%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872181129&rft_id=info:pmid/&rfr_iscdi=true |