Modeling Water Exchange on an Aluminum Polyoxocation
For the first time, water exchange on a polymeric complex has been modeled using a combination of gas-phase ab initio calculations and molecular dynamics (MD) simulations. The GaO4Al12(OH)24(H2O)12 7+(aq) ion (GaAl12) was chosen because high-quality experimental data exist, including an activation e...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2005-12, Vol.109 (50), p.23771-23775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23775 |
---|---|
container_issue | 50 |
container_start_page | 23771 |
container_title | The journal of physical chemistry. B |
container_volume | 109 |
creator | Stack, Andrew G Rustad, James R Casey, William H |
description | For the first time, water exchange on a polymeric complex has been modeled using a combination of gas-phase ab initio calculations and molecular dynamics (MD) simulations. The GaO4Al12(OH)24(H2O)12 7+(aq) ion (GaAl12) was chosen because high-quality experimental data exist, including an activation enthalpy (+63 ± 7 kJ/mol) and an activation volume (+3 ± 1 cm3/mol). We took a two-step approach. First, the local solvent structure and the initial states for reaction were inferred from the molecular dynamics simulations. Second, we used this information to evaluate initial-state structures in the ab initio calculations. The energy differences between the initial and transition states from the ab initio calculations varied from +59 kJ/mol to +53 kJ/mol depending upon details, closely approximating the activation enthalpy. |
doi_str_mv | 10.1021/jp0530505 |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1007854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_P4CF9XLB_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-a347t-e207933df85b1236f4f4b5647764b44cef994001091a5d8aa1f6254cd84c272d3</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AgipvTg_-AFMGDh2p-pz3OsakwceBEbyFN062zTUbTwvbfG-nQi4fwAu_De48vAJcI3iGI0f1mCxmBDLIjMEQMwzg8cXz4cwT5AJx5v4EQM5zwUzBAnAhGWDIE9MXlpirtKvpQrWmi6U6vlV2ZyNlI2WhcdXVpuzpauGrvdk6rtnT2HJwUqvLm4lBH4H02XU6e4vnr4_NkPI8VoaKNTbgiJSQvEpYhTHhBC5oxToXgNKNUmyJNKYQIpkixPFEKFRwzqvOEaixwTkbgup_rfFtKr8vW6LV21hrdSgShSBgN6LZHunHeN6aQ26asVbMPQv7EI3_jCfaqt9suq03-Jw95BBD3oPSt2f32VfMluQhGLhdvckEns_Rz_iB58De9V9rLjesaG_L4Z_E3VNp38Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling Water Exchange on an Aluminum Polyoxocation</title><source>ACS Publications</source><creator>Stack, Andrew G ; Rustad, James R ; Casey, William H</creator><creatorcontrib>Stack, Andrew G ; Rustad, James R ; Casey, William H ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>For the first time, water exchange on a polymeric complex has been modeled using a combination of gas-phase ab initio calculations and molecular dynamics (MD) simulations. The GaO4Al12(OH)24(H2O)12 7+(aq) ion (GaAl12) was chosen because high-quality experimental data exist, including an activation enthalpy (+63 ± 7 kJ/mol) and an activation volume (+3 ± 1 cm3/mol). We took a two-step approach. First, the local solvent structure and the initial states for reaction were inferred from the molecular dynamics simulations. Second, we used this information to evaluate initial-state structures in the ab initio calculations. The energy differences between the initial and transition states from the ab initio calculations varied from +59 kJ/mol to +53 kJ/mol depending upon details, closely approximating the activation enthalpy.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp0530505</identifier><identifier>PMID: 16375358</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ALUMINIUM ; ENTHALPY ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; SIMULATION ; SOLVENTS ; WATER</subject><ispartof>The journal of physical chemistry. B, 2005-12, Vol.109 (50), p.23771-23775</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a347t-e207933df85b1236f4f4b5647764b44cef994001091a5d8aa1f6254cd84c272d3</citedby><cites>FETCH-LOGICAL-a347t-e207933df85b1236f4f4b5647764b44cef994001091a5d8aa1f6254cd84c272d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0530505$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0530505$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16375358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1007854$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stack, Andrew G</creatorcontrib><creatorcontrib>Rustad, James R</creatorcontrib><creatorcontrib>Casey, William H</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Modeling Water Exchange on an Aluminum Polyoxocation</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>For the first time, water exchange on a polymeric complex has been modeled using a combination of gas-phase ab initio calculations and molecular dynamics (MD) simulations. The GaO4Al12(OH)24(H2O)12 7+(aq) ion (GaAl12) was chosen because high-quality experimental data exist, including an activation enthalpy (+63 ± 7 kJ/mol) and an activation volume (+3 ± 1 cm3/mol). We took a two-step approach. First, the local solvent structure and the initial states for reaction were inferred from the molecular dynamics simulations. Second, we used this information to evaluate initial-state structures in the ab initio calculations. The energy differences between the initial and transition states from the ab initio calculations varied from +59 kJ/mol to +53 kJ/mol depending upon details, closely approximating the activation enthalpy.</description><subject>ALUMINIUM</subject><subject>ENTHALPY</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>SIMULATION</subject><subject>SOLVENTS</subject><subject>WATER</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpt0M9LwzAUB_AgipvTg_-AFMGDh2p-pz3OsakwceBEbyFN062zTUbTwvbfG-nQi4fwAu_De48vAJcI3iGI0f1mCxmBDLIjMEQMwzg8cXz4cwT5AJx5v4EQM5zwUzBAnAhGWDIE9MXlpirtKvpQrWmi6U6vlV2ZyNlI2WhcdXVpuzpauGrvdk6rtnT2HJwUqvLm4lBH4H02XU6e4vnr4_NkPI8VoaKNTbgiJSQvEpYhTHhBC5oxToXgNKNUmyJNKYQIpkixPFEKFRwzqvOEaixwTkbgup_rfFtKr8vW6LV21hrdSgShSBgN6LZHunHeN6aQ26asVbMPQv7EI3_jCfaqt9suq03-Jw95BBD3oPSt2f32VfMluQhGLhdvckEns_Rz_iB58De9V9rLjesaG_L4Z_E3VNp38Q</recordid><startdate>20051222</startdate><enddate>20051222</enddate><creator>Stack, Andrew G</creator><creator>Rustad, James R</creator><creator>Casey, William H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20051222</creationdate><title>Modeling Water Exchange on an Aluminum Polyoxocation</title><author>Stack, Andrew G ; Rustad, James R ; Casey, William H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a347t-e207933df85b1236f4f4b5647764b44cef994001091a5d8aa1f6254cd84c272d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALUMINIUM</topic><topic>ENTHALPY</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>SIMULATION</topic><topic>SOLVENTS</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stack, Andrew G</creatorcontrib><creatorcontrib>Rustad, James R</creatorcontrib><creatorcontrib>Casey, William H</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stack, Andrew G</au><au>Rustad, James R</au><au>Casey, William H</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Water Exchange on an Aluminum Polyoxocation</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-12-22</date><risdate>2005</risdate><volume>109</volume><issue>50</issue><spage>23771</spage><epage>23775</epage><pages>23771-23775</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>For the first time, water exchange on a polymeric complex has been modeled using a combination of gas-phase ab initio calculations and molecular dynamics (MD) simulations. The GaO4Al12(OH)24(H2O)12 7+(aq) ion (GaAl12) was chosen because high-quality experimental data exist, including an activation enthalpy (+63 ± 7 kJ/mol) and an activation volume (+3 ± 1 cm3/mol). We took a two-step approach. First, the local solvent structure and the initial states for reaction were inferred from the molecular dynamics simulations. Second, we used this information to evaluate initial-state structures in the ab initio calculations. The energy differences between the initial and transition states from the ab initio calculations varied from +59 kJ/mol to +53 kJ/mol depending upon details, closely approximating the activation enthalpy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16375358</pmid><doi>10.1021/jp0530505</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2005-12, Vol.109 (50), p.23771-23775 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_osti_scitechconnect_1007854 |
source | ACS Publications |
subjects | ALUMINIUM ENTHALPY INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY SIMULATION SOLVENTS WATER |
title | Modeling Water Exchange on an Aluminum Polyoxocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Water%20Exchange%20on%20an%20Aluminum%20Polyoxocation&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Stack,%20Andrew%20G&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2005-12-22&rft.volume=109&rft.issue=50&rft.spage=23771&rft.epage=23775&rft.pages=23771-23775&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp0530505&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_P4CF9XLB_6%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16375358&rfr_iscdi=true |