Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites

Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2006-10, Vol.102 (1), p.128-139
Hauptverfasser: Finnigan, Bradley, Halley, Peter, Jack, Kevin, McDowell, Alasdair, Truss, Rowan, Casey, Phil, Knott, Robert, Martin, Darren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 1
container_start_page 128
container_title Journal of applied polymer science
container_volume 102
creator Finnigan, Bradley
Halley, Peter
Jack, Kevin
McDowell, Alasdair
Truss, Rowan
Casey, Phil
Knott, Robert
Martin, Darren
description Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006
doi_str_mv 10.1002/app.23347
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1007775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29515381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</originalsourceid><addsrcrecordid>eNp1kMFu1DAURSMEEkPLgj-wkEBikdZ24thZVlVbkKq2UouQurEcz_MkkNjBzwPM3-NpBlixsmSfe_zeLYo3jJ4wSvmpmecTXlW1fFasGG1lWTdcPS9W-Y2Vqm3Fy-IV4ldKGRO0WRV44RzYRIIjqQdifkA0GyAYXCoRNhP4REbwm9ST4J-QKcS5D2PY7IjxazLHMENMA-DecYhAvg_jbhsh9cYD8cYHG6Y54JAAj4sXzowIrw_nUfH58uLh_GN5fXv16fzsurR1xWXJqZNqrYyDSkjDXM1stVa2Ec41HWUtY8p0Hbe1Y10HgtmWCt7Wgop1LQQT1VHxdvEGTINGm_-2vQ3e54V1bktKuYfeL1Be5PsWMOlpQAvjmOcOW9S83asUy-CHBbQxIEZweo7DZOIuq_Y2rnP3-qn7zL47SA1aM7povB3wX0BRoQRrM3e6cD-HEXb_F-qzu7s_5nJJDJjg19-Eid90Iysp9JebK60em_v6pqX6sfoN7f6jOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29515381</pqid></control><display><type>article</type><title>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Finnigan, Bradley ; Halley, Peter ; Jack, Kevin ; McDowell, Alasdair ; Truss, Rowan ; Casey, Phil ; Knott, Robert ; Martin, Darren</creator><creatorcontrib>Finnigan, Bradley ; Halley, Peter ; Jack, Kevin ; McDowell, Alasdair ; Truss, Rowan ; Casey, Phil ; Knott, Robert ; Martin, Darren ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.23347</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; BONDING ; CALORIMETRY ; CHAINS ; Composites ; Exact sciences and technology ; FILLERS ; FLEXIBILITY ; Forms of application and semi-finished materials ; MOLECULAR WEIGHT ; MORPHOLOGY ; nanoparticles ; NEUTRONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Polymer industry, paints, wood ; POLYMERS ; POLYURETHANES ; SCATTERING ; SILICATES ; structure-property relations ; Technology of polymers ; TENSILE PROPERTIES ; URETHANE</subject><ispartof>Journal of applied polymer science, 2006-10, Vol.102 (1), p.128-139</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</citedby><cites>FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.23347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.23347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18058519$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1007775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Finnigan, Bradley</creatorcontrib><creatorcontrib>Halley, Peter</creatorcontrib><creatorcontrib>Jack, Kevin</creatorcontrib><creatorcontrib>McDowell, Alasdair</creatorcontrib><creatorcontrib>Truss, Rowan</creatorcontrib><creatorcontrib>Casey, Phil</creatorcontrib><creatorcontrib>Knott, Robert</creatorcontrib><creatorcontrib>Martin, Darren</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006</description><subject>Applied sciences</subject><subject>BONDING</subject><subject>CALORIMETRY</subject><subject>CHAINS</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>FILLERS</subject><subject>FLEXIBILITY</subject><subject>Forms of application and semi-finished materials</subject><subject>MOLECULAR WEIGHT</subject><subject>MORPHOLOGY</subject><subject>nanoparticles</subject><subject>NEUTRONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Polymer industry, paints, wood</subject><subject>POLYMERS</subject><subject>POLYURETHANES</subject><subject>SCATTERING</subject><subject>SILICATES</subject><subject>structure-property relations</subject><subject>Technology of polymers</subject><subject>TENSILE PROPERTIES</subject><subject>URETHANE</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAURSMEEkPLgj-wkEBikdZ24thZVlVbkKq2UouQurEcz_MkkNjBzwPM3-NpBlixsmSfe_zeLYo3jJ4wSvmpmecTXlW1fFasGG1lWTdcPS9W-Y2Vqm3Fy-IV4ldKGRO0WRV44RzYRIIjqQdifkA0GyAYXCoRNhP4REbwm9ST4J-QKcS5D2PY7IjxazLHMENMA-DecYhAvg_jbhsh9cYD8cYHG6Y54JAAj4sXzowIrw_nUfH58uLh_GN5fXv16fzsurR1xWXJqZNqrYyDSkjDXM1stVa2Ec41HWUtY8p0Hbe1Y10HgtmWCt7Wgop1LQQT1VHxdvEGTINGm_-2vQ3e54V1bktKuYfeL1Be5PsWMOlpQAvjmOcOW9S83asUy-CHBbQxIEZweo7DZOIuq_Y2rnP3-qn7zL47SA1aM7povB3wX0BRoQRrM3e6cD-HEXb_F-qzu7s_5nJJDJjg19-Eid90Iysp9JebK60em_v6pqX6sfoN7f6jOg</recordid><startdate>20061005</startdate><enddate>20061005</enddate><creator>Finnigan, Bradley</creator><creator>Halley, Peter</creator><creator>Jack, Kevin</creator><creator>McDowell, Alasdair</creator><creator>Truss, Rowan</creator><creator>Casey, Phil</creator><creator>Knott, Robert</creator><creator>Martin, Darren</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20061005</creationdate><title>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</title><author>Finnigan, Bradley ; Halley, Peter ; Jack, Kevin ; McDowell, Alasdair ; Truss, Rowan ; Casey, Phil ; Knott, Robert ; Martin, Darren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>BONDING</topic><topic>CALORIMETRY</topic><topic>CHAINS</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>FILLERS</topic><topic>FLEXIBILITY</topic><topic>Forms of application and semi-finished materials</topic><topic>MOLECULAR WEIGHT</topic><topic>MORPHOLOGY</topic><topic>nanoparticles</topic><topic>NEUTRONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Polymer industry, paints, wood</topic><topic>POLYMERS</topic><topic>POLYURETHANES</topic><topic>SCATTERING</topic><topic>SILICATES</topic><topic>structure-property relations</topic><topic>Technology of polymers</topic><topic>TENSILE PROPERTIES</topic><topic>URETHANE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finnigan, Bradley</creatorcontrib><creatorcontrib>Halley, Peter</creatorcontrib><creatorcontrib>Jack, Kevin</creatorcontrib><creatorcontrib>McDowell, Alasdair</creatorcontrib><creatorcontrib>Truss, Rowan</creatorcontrib><creatorcontrib>Casey, Phil</creatorcontrib><creatorcontrib>Knott, Robert</creatorcontrib><creatorcontrib>Martin, Darren</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finnigan, Bradley</au><au>Halley, Peter</au><au>Jack, Kevin</au><au>McDowell, Alasdair</au><au>Truss, Rowan</au><au>Casey, Phil</au><au>Knott, Robert</au><au>Martin, Darren</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2006-10-05</date><risdate>2006</risdate><volume>102</volume><issue>1</issue><spage>128</spage><epage>139</epage><pages>128-139</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.23347</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2006-10, Vol.102 (1), p.128-139
issn 0021-8995
1097-4628
language eng
recordid cdi_osti_scitechconnect_1007775
source Wiley Online Library - AutoHoldings Journals
subjects Applied sciences
BONDING
CALORIMETRY
CHAINS
Composites
Exact sciences and technology
FILLERS
FLEXIBILITY
Forms of application and semi-finished materials
MOLECULAR WEIGHT
MORPHOLOGY
nanoparticles
NEUTRONS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Polymer industry, paints, wood
POLYMERS
POLYURETHANES
SCATTERING
SILICATES
structure-property relations
Technology of polymers
TENSILE PROPERTIES
URETHANE
title Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20average%20soft-segment%20length%20on%20the%20morphology%20and%20properties%20of%20segmented%20polyurethane%20nanocomposites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Finnigan,%20Bradley&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2006-10-05&rft.volume=102&rft.issue=1&rft.spage=128&rft.epage=139&rft.pages=128-139&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.23347&rft_dat=%3Cproquest_osti_%3E29515381%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29515381&rft_id=info:pmid/&rfr_iscdi=true