Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites
Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weigh...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2006-10, Vol.102 (1), p.128-139 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 1 |
container_start_page | 128 |
container_title | Journal of applied polymer science |
container_volume | 102 |
creator | Finnigan, Bradley Halley, Peter Jack, Kevin McDowell, Alasdair Truss, Rowan Casey, Phil Knott, Robert Martin, Darren |
description | Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006 |
doi_str_mv | 10.1002/app.23347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1007775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29515381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</originalsourceid><addsrcrecordid>eNp1kMFu1DAURSMEEkPLgj-wkEBikdZ24thZVlVbkKq2UouQurEcz_MkkNjBzwPM3-NpBlixsmSfe_zeLYo3jJ4wSvmpmecTXlW1fFasGG1lWTdcPS9W-Y2Vqm3Fy-IV4ldKGRO0WRV44RzYRIIjqQdifkA0GyAYXCoRNhP4REbwm9ST4J-QKcS5D2PY7IjxazLHMENMA-DecYhAvg_jbhsh9cYD8cYHG6Y54JAAj4sXzowIrw_nUfH58uLh_GN5fXv16fzsurR1xWXJqZNqrYyDSkjDXM1stVa2Ec41HWUtY8p0Hbe1Y10HgtmWCt7Wgop1LQQT1VHxdvEGTINGm_-2vQ3e54V1bktKuYfeL1Be5PsWMOlpQAvjmOcOW9S83asUy-CHBbQxIEZweo7DZOIuq_Y2rnP3-qn7zL47SA1aM7povB3wX0BRoQRrM3e6cD-HEXb_F-qzu7s_5nJJDJjg19-Eid90Iysp9JebK60em_v6pqX6sfoN7f6jOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29515381</pqid></control><display><type>article</type><title>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Finnigan, Bradley ; Halley, Peter ; Jack, Kevin ; McDowell, Alasdair ; Truss, Rowan ; Casey, Phil ; Knott, Robert ; Martin, Darren</creator><creatorcontrib>Finnigan, Bradley ; Halley, Peter ; Jack, Kevin ; McDowell, Alasdair ; Truss, Rowan ; Casey, Phil ; Knott, Robert ; Martin, Darren ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.23347</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; BONDING ; CALORIMETRY ; CHAINS ; Composites ; Exact sciences and technology ; FILLERS ; FLEXIBILITY ; Forms of application and semi-finished materials ; MOLECULAR WEIGHT ; MORPHOLOGY ; nanoparticles ; NEUTRONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Polymer industry, paints, wood ; POLYMERS ; POLYURETHANES ; SCATTERING ; SILICATES ; structure-property relations ; Technology of polymers ; TENSILE PROPERTIES ; URETHANE</subject><ispartof>Journal of applied polymer science, 2006-10, Vol.102 (1), p.128-139</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</citedby><cites>FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.23347$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.23347$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18058519$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1007775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Finnigan, Bradley</creatorcontrib><creatorcontrib>Halley, Peter</creatorcontrib><creatorcontrib>Jack, Kevin</creatorcontrib><creatorcontrib>McDowell, Alasdair</creatorcontrib><creatorcontrib>Truss, Rowan</creatorcontrib><creatorcontrib>Casey, Phil</creatorcontrib><creatorcontrib>Knott, Robert</creatorcontrib><creatorcontrib>Martin, Darren</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006</description><subject>Applied sciences</subject><subject>BONDING</subject><subject>CALORIMETRY</subject><subject>CHAINS</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>FILLERS</subject><subject>FLEXIBILITY</subject><subject>Forms of application and semi-finished materials</subject><subject>MOLECULAR WEIGHT</subject><subject>MORPHOLOGY</subject><subject>nanoparticles</subject><subject>NEUTRONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Polymer industry, paints, wood</subject><subject>POLYMERS</subject><subject>POLYURETHANES</subject><subject>SCATTERING</subject><subject>SILICATES</subject><subject>structure-property relations</subject><subject>Technology of polymers</subject><subject>TENSILE PROPERTIES</subject><subject>URETHANE</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAURSMEEkPLgj-wkEBikdZ24thZVlVbkKq2UouQurEcz_MkkNjBzwPM3-NpBlixsmSfe_zeLYo3jJ4wSvmpmecTXlW1fFasGG1lWTdcPS9W-Y2Vqm3Fy-IV4ldKGRO0WRV44RzYRIIjqQdifkA0GyAYXCoRNhP4REbwm9ST4J-QKcS5D2PY7IjxazLHMENMA-DecYhAvg_jbhsh9cYD8cYHG6Y54JAAj4sXzowIrw_nUfH58uLh_GN5fXv16fzsurR1xWXJqZNqrYyDSkjDXM1stVa2Ec41HWUtY8p0Hbe1Y10HgtmWCt7Wgop1LQQT1VHxdvEGTINGm_-2vQ3e54V1bktKuYfeL1Be5PsWMOlpQAvjmOcOW9S83asUy-CHBbQxIEZweo7DZOIuq_Y2rnP3-qn7zL47SA1aM7povB3wX0BRoQRrM3e6cD-HEXb_F-qzu7s_5nJJDJjg19-Eid90Iysp9JebK60em_v6pqX6sfoN7f6jOg</recordid><startdate>20061005</startdate><enddate>20061005</enddate><creator>Finnigan, Bradley</creator><creator>Halley, Peter</creator><creator>Jack, Kevin</creator><creator>McDowell, Alasdair</creator><creator>Truss, Rowan</creator><creator>Casey, Phil</creator><creator>Knott, Robert</creator><creator>Martin, Darren</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20061005</creationdate><title>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</title><author>Finnigan, Bradley ; Halley, Peter ; Jack, Kevin ; McDowell, Alasdair ; Truss, Rowan ; Casey, Phil ; Knott, Robert ; Martin, Darren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4327-20f78d8afe357a1f41c3d8c65ff6b019118abb2c4f1bbe51c905294505d455153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>BONDING</topic><topic>CALORIMETRY</topic><topic>CHAINS</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>FILLERS</topic><topic>FLEXIBILITY</topic><topic>Forms of application and semi-finished materials</topic><topic>MOLECULAR WEIGHT</topic><topic>MORPHOLOGY</topic><topic>nanoparticles</topic><topic>NEUTRONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Polymer industry, paints, wood</topic><topic>POLYMERS</topic><topic>POLYURETHANES</topic><topic>SCATTERING</topic><topic>SILICATES</topic><topic>structure-property relations</topic><topic>Technology of polymers</topic><topic>TENSILE PROPERTIES</topic><topic>URETHANE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finnigan, Bradley</creatorcontrib><creatorcontrib>Halley, Peter</creatorcontrib><creatorcontrib>Jack, Kevin</creatorcontrib><creatorcontrib>McDowell, Alasdair</creatorcontrib><creatorcontrib>Truss, Rowan</creatorcontrib><creatorcontrib>Casey, Phil</creatorcontrib><creatorcontrib>Knott, Robert</creatorcontrib><creatorcontrib>Martin, Darren</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finnigan, Bradley</au><au>Halley, Peter</au><au>Jack, Kevin</au><au>McDowell, Alasdair</au><au>Truss, Rowan</au><au>Casey, Phil</au><au>Knott, Robert</au><au>Martin, Darren</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2006-10-05</date><risdate>2006</risdate><volume>102</volume><issue>1</issue><spage>128</spage><epage>139</epage><pages>128-139</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small‐angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress–strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 128–139, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.23347</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2006-10, Vol.102 (1), p.128-139 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_osti_scitechconnect_1007775 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Applied sciences BONDING CALORIMETRY CHAINS Composites Exact sciences and technology FILLERS FLEXIBILITY Forms of application and semi-finished materials MOLECULAR WEIGHT MORPHOLOGY nanoparticles NEUTRONS PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Polymer industry, paints, wood POLYMERS POLYURETHANES SCATTERING SILICATES structure-property relations Technology of polymers TENSILE PROPERTIES URETHANE |
title | Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20the%20average%20soft-segment%20length%20on%20the%20morphology%20and%20properties%20of%20segmented%20polyurethane%20nanocomposites&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Finnigan,%20Bradley&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2006-10-05&rft.volume=102&rft.issue=1&rft.spage=128&rft.epage=139&rft.pages=128-139&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.23347&rft_dat=%3Cproquest_osti_%3E29515381%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29515381&rft_id=info:pmid/&rfr_iscdi=true |