Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys

The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of non-crystalline solids 2007-12, Vol.353 (52-54), p.4723-4731
Hauptverfasser: Bondi, K.S., Gangopadhyay, A.K., Marine, Z., Kim, T.H., Mukhopadhyay, Anindita, Goldman, A.I., Buhro, William E., Kelton, K.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4731
container_issue 52-54
container_start_page 4723
container_title Journal of non-crystalline solids
container_volume 353
creator Bondi, K.S.
Gangopadhyay, A.K.
Marine, Z.
Kim, T.H.
Mukhopadhyay, Anindita
Goldman, A.I.
Buhro, William E.
Kelton, K.F.
description The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.
doi_str_mv 10.1016/j.jnoncrysol.2007.06.063
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1007643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309307007405</els_id><sourcerecordid>S0022309307007405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKffIQg-tuZP17SPc2wqDHxxDz6FNE22lDYZSVD27U1XYY-GC3m4v3PvPQcAiFGOES6fu7yzzkp_Cq7PCUIsR2UqegVmuGI0KypMrsEMIUIyimp6C-5C6FB6jFYzsFtrrWQM0Gk4GOmd6Ht3MnYPf0w8QNrC6IUNJhpn4aCi6BNq4b4XIUDt_CDOHWPhsv_aKHiWh3twoxOpHv7-Odht1p-rt2z78fq-Wm4zSWoUs4UusJRUFIRqhhZlVSDMSoxVgTQlrGSCSFVo0VAlGCWNkJJQihZNW8hGtA2dg8dprgvR8CBNVPIgnbXJEsfJYlnQBFUTlNyF4JXmR28G4U-J4GOGvOOXDPmYIUdlqlH6NEmPIkjR6xSFNOGir2tGUFUn7mXiVDL7bZQfb1FWqtb48ZTWmf-X_QJnko2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bondi, K.S. ; Gangopadhyay, A.K. ; Marine, Z. ; Kim, T.H. ; Mukhopadhyay, Anindita ; Goldman, A.I. ; Buhro, William E. ; Kelton, K.F.</creator><creatorcontrib>Bondi, K.S. ; Gangopadhyay, A.K. ; Marine, Z. ; Kim, T.H. ; Mukhopadhyay, Anindita ; Goldman, A.I. ; Buhro, William E. ; Kelton, K.F. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2007.06.063</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ALLOYS ; Amorphous metals ; CALORIMETRY ; Condensed matter: structure, mechanical and thermal properties ; CRYSTALLIZATION ; DIFFERENTIAL THERMAL ANALYSIS ; Diffusion and transport ; Disordered solids ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; GLASS ; Glass formation ; Glass transition ; Glass transitions ; Glasses ; MATERIALS SCIENCE ; Medium-range order ; metallic glasses ; Nano-composites ; NUCLEATION ; Physics ; Rare-earth in glasses ; Short-range order ; Specific phase transitions ; STABILITY ; STEM/TEM ; Structure of solids and liquids; crystallography ; Synchrotron radiation ; Thermodynamics ; TRANSITION ELEMENTS ; Transition metals ; TRANSMISSION ELECTRON MICROSCOPY ; Viscosity ; X-RAY DIFFRACTION</subject><ispartof>Journal of non-crystalline solids, 2007-12, Vol.353 (52-54), p.4723-4731</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</citedby><cites>FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2007.06.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19972089$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1007643$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondi, K.S.</creatorcontrib><creatorcontrib>Gangopadhyay, A.K.</creatorcontrib><creatorcontrib>Marine, Z.</creatorcontrib><creatorcontrib>Kim, T.H.</creatorcontrib><creatorcontrib>Mukhopadhyay, Anindita</creatorcontrib><creatorcontrib>Goldman, A.I.</creatorcontrib><creatorcontrib>Buhro, William E.</creatorcontrib><creatorcontrib>Kelton, K.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</title><title>Journal of non-crystalline solids</title><description>The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.</description><subject>ALLOYS</subject><subject>Amorphous metals</subject><subject>CALORIMETRY</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTALLIZATION</subject><subject>DIFFERENTIAL THERMAL ANALYSIS</subject><subject>Diffusion and transport</subject><subject>Disordered solids</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>GLASS</subject><subject>Glass formation</subject><subject>Glass transition</subject><subject>Glass transitions</subject><subject>Glasses</subject><subject>MATERIALS SCIENCE</subject><subject>Medium-range order</subject><subject>metallic glasses</subject><subject>Nano-composites</subject><subject>NUCLEATION</subject><subject>Physics</subject><subject>Rare-earth in glasses</subject><subject>Short-range order</subject><subject>Specific phase transitions</subject><subject>STABILITY</subject><subject>STEM/TEM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Synchrotron radiation</subject><subject>Thermodynamics</subject><subject>TRANSITION ELEMENTS</subject><subject>Transition metals</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Viscosity</subject><subject>X-RAY DIFFRACTION</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKffIQg-tuZP17SPc2wqDHxxDz6FNE22lDYZSVD27U1XYY-GC3m4v3PvPQcAiFGOES6fu7yzzkp_Cq7PCUIsR2UqegVmuGI0KypMrsEMIUIyimp6C-5C6FB6jFYzsFtrrWQM0Gk4GOmd6Ht3MnYPf0w8QNrC6IUNJhpn4aCi6BNq4b4XIUDt_CDOHWPhsv_aKHiWh3twoxOpHv7-Odht1p-rt2z78fq-Wm4zSWoUs4UusJRUFIRqhhZlVSDMSoxVgTQlrGSCSFVo0VAlGCWNkJJQihZNW8hGtA2dg8dprgvR8CBNVPIgnbXJEsfJYlnQBFUTlNyF4JXmR28G4U-J4GOGvOOXDPmYIUdlqlH6NEmPIkjR6xSFNOGir2tGUFUn7mXiVDL7bZQfb1FWqtb48ZTWmf-X_QJnko2w</recordid><startdate>20071215</startdate><enddate>20071215</enddate><creator>Bondi, K.S.</creator><creator>Gangopadhyay, A.K.</creator><creator>Marine, Z.</creator><creator>Kim, T.H.</creator><creator>Mukhopadhyay, Anindita</creator><creator>Goldman, A.I.</creator><creator>Buhro, William E.</creator><creator>Kelton, K.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20071215</creationdate><title>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</title><author>Bondi, K.S. ; Gangopadhyay, A.K. ; Marine, Z. ; Kim, T.H. ; Mukhopadhyay, Anindita ; Goldman, A.I. ; Buhro, William E. ; Kelton, K.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ALLOYS</topic><topic>Amorphous metals</topic><topic>CALORIMETRY</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTALLIZATION</topic><topic>DIFFERENTIAL THERMAL ANALYSIS</topic><topic>Diffusion and transport</topic><topic>Disordered solids</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>GLASS</topic><topic>Glass formation</topic><topic>Glass transition</topic><topic>Glass transitions</topic><topic>Glasses</topic><topic>MATERIALS SCIENCE</topic><topic>Medium-range order</topic><topic>metallic glasses</topic><topic>Nano-composites</topic><topic>NUCLEATION</topic><topic>Physics</topic><topic>Rare-earth in glasses</topic><topic>Short-range order</topic><topic>Specific phase transitions</topic><topic>STABILITY</topic><topic>STEM/TEM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Synchrotron radiation</topic><topic>Thermodynamics</topic><topic>TRANSITION ELEMENTS</topic><topic>Transition metals</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Viscosity</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondi, K.S.</creatorcontrib><creatorcontrib>Gangopadhyay, A.K.</creatorcontrib><creatorcontrib>Marine, Z.</creatorcontrib><creatorcontrib>Kim, T.H.</creatorcontrib><creatorcontrib>Mukhopadhyay, Anindita</creatorcontrib><creatorcontrib>Goldman, A.I.</creatorcontrib><creatorcontrib>Buhro, William E.</creatorcontrib><creatorcontrib>Kelton, K.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondi, K.S.</au><au>Gangopadhyay, A.K.</au><au>Marine, Z.</au><au>Kim, T.H.</au><au>Mukhopadhyay, Anindita</au><au>Goldman, A.I.</au><au>Buhro, William E.</au><au>Kelton, K.F.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2007-12-15</date><risdate>2007</risdate><volume>353</volume><issue>52-54</issue><spage>4723</spage><epage>4731</epage><pages>4723-4731</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2007.06.063</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3093
ispartof Journal of non-crystalline solids, 2007-12, Vol.353 (52-54), p.4723-4731
issn 0022-3093
1873-4812
language eng
recordid cdi_osti_scitechconnect_1007643
source ScienceDirect Journals (5 years ago - present)
subjects ALLOYS
Amorphous metals
CALORIMETRY
Condensed matter: structure, mechanical and thermal properties
CRYSTALLIZATION
DIFFERENTIAL THERMAL ANALYSIS
Diffusion and transport
Disordered solids
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
GLASS
Glass formation
Glass transition
Glass transitions
Glasses
MATERIALS SCIENCE
Medium-range order
metallic glasses
Nano-composites
NUCLEATION
Physics
Rare-earth in glasses
Short-range order
Specific phase transitions
STABILITY
STEM/TEM
Structure of solids and liquids
crystallography
Synchrotron radiation
Thermodynamics
TRANSITION ELEMENTS
Transition metals
TRANSMISSION ELECTRON MICROSCOPY
Viscosity
X-RAY DIFFRACTION
title Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20microalloying%20with%203d%20transition%20metals%20on%20glass%20formation%20in%20AlYFe%20alloys&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Bondi,%20K.S.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2007-12-15&rft.volume=353&rft.issue=52-54&rft.spage=4723&rft.epage=4731&rft.pages=4723-4731&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2007.06.063&rft_dat=%3Celsevier_osti_%3ES0022309307007405%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022309307007405&rfr_iscdi=true