Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys
The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of...
Gespeichert in:
Veröffentlicht in: | Journal of non-crystalline solids 2007-12, Vol.353 (52-54), p.4723-4731 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4731 |
---|---|
container_issue | 52-54 |
container_start_page | 4723 |
container_title | Journal of non-crystalline solids |
container_volume | 353 |
creator | Bondi, K.S. Gangopadhyay, A.K. Marine, Z. Kim, T.H. Mukhopadhyay, Anindita Goldman, A.I. Buhro, William E. Kelton, K.F. |
description | The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions. |
doi_str_mv | 10.1016/j.jnoncrysol.2007.06.063 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1007643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022309307007405</els_id><sourcerecordid>S0022309307007405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKffIQg-tuZP17SPc2wqDHxxDz6FNE22lDYZSVD27U1XYY-GC3m4v3PvPQcAiFGOES6fu7yzzkp_Cq7PCUIsR2UqegVmuGI0KypMrsEMIUIyimp6C-5C6FB6jFYzsFtrrWQM0Gk4GOmd6Ht3MnYPf0w8QNrC6IUNJhpn4aCi6BNq4b4XIUDt_CDOHWPhsv_aKHiWh3twoxOpHv7-Odht1p-rt2z78fq-Wm4zSWoUs4UusJRUFIRqhhZlVSDMSoxVgTQlrGSCSFVo0VAlGCWNkJJQihZNW8hGtA2dg8dprgvR8CBNVPIgnbXJEsfJYlnQBFUTlNyF4JXmR28G4U-J4GOGvOOXDPmYIUdlqlH6NEmPIkjR6xSFNOGir2tGUFUn7mXiVDL7bZQfb1FWqtb48ZTWmf-X_QJnko2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bondi, K.S. ; Gangopadhyay, A.K. ; Marine, Z. ; Kim, T.H. ; Mukhopadhyay, Anindita ; Goldman, A.I. ; Buhro, William E. ; Kelton, K.F.</creator><creatorcontrib>Bondi, K.S. ; Gangopadhyay, A.K. ; Marine, Z. ; Kim, T.H. ; Mukhopadhyay, Anindita ; Goldman, A.I. ; Buhro, William E. ; Kelton, K.F. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.</description><identifier>ISSN: 0022-3093</identifier><identifier>EISSN: 1873-4812</identifier><identifier>DOI: 10.1016/j.jnoncrysol.2007.06.063</identifier><identifier>CODEN: JNCSBJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>ALLOYS ; Amorphous metals ; CALORIMETRY ; Condensed matter: structure, mechanical and thermal properties ; CRYSTALLIZATION ; DIFFERENTIAL THERMAL ANALYSIS ; Diffusion and transport ; Disordered solids ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; GLASS ; Glass formation ; Glass transition ; Glass transitions ; Glasses ; MATERIALS SCIENCE ; Medium-range order ; metallic glasses ; Nano-composites ; NUCLEATION ; Physics ; Rare-earth in glasses ; Short-range order ; Specific phase transitions ; STABILITY ; STEM/TEM ; Structure of solids and liquids; crystallography ; Synchrotron radiation ; Thermodynamics ; TRANSITION ELEMENTS ; Transition metals ; TRANSMISSION ELECTRON MICROSCOPY ; Viscosity ; X-RAY DIFFRACTION</subject><ispartof>Journal of non-crystalline solids, 2007-12, Vol.353 (52-54), p.4723-4731</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</citedby><cites>FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnoncrysol.2007.06.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19972089$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1007643$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondi, K.S.</creatorcontrib><creatorcontrib>Gangopadhyay, A.K.</creatorcontrib><creatorcontrib>Marine, Z.</creatorcontrib><creatorcontrib>Kim, T.H.</creatorcontrib><creatorcontrib>Mukhopadhyay, Anindita</creatorcontrib><creatorcontrib>Goldman, A.I.</creatorcontrib><creatorcontrib>Buhro, William E.</creatorcontrib><creatorcontrib>Kelton, K.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</title><title>Journal of non-crystalline solids</title><description>The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.</description><subject>ALLOYS</subject><subject>Amorphous metals</subject><subject>CALORIMETRY</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>CRYSTALLIZATION</subject><subject>DIFFERENTIAL THERMAL ANALYSIS</subject><subject>Diffusion and transport</subject><subject>Disordered solids</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>GLASS</subject><subject>Glass formation</subject><subject>Glass transition</subject><subject>Glass transitions</subject><subject>Glasses</subject><subject>MATERIALS SCIENCE</subject><subject>Medium-range order</subject><subject>metallic glasses</subject><subject>Nano-composites</subject><subject>NUCLEATION</subject><subject>Physics</subject><subject>Rare-earth in glasses</subject><subject>Short-range order</subject><subject>Specific phase transitions</subject><subject>STABILITY</subject><subject>STEM/TEM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Synchrotron radiation</subject><subject>Thermodynamics</subject><subject>TRANSITION ELEMENTS</subject><subject>Transition metals</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Viscosity</subject><subject>X-RAY DIFFRACTION</subject><issn>0022-3093</issn><issn>1873-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKffIQg-tuZP17SPc2wqDHxxDz6FNE22lDYZSVD27U1XYY-GC3m4v3PvPQcAiFGOES6fu7yzzkp_Cq7PCUIsR2UqegVmuGI0KypMrsEMIUIyimp6C-5C6FB6jFYzsFtrrWQM0Gk4GOmd6Ht3MnYPf0w8QNrC6IUNJhpn4aCi6BNq4b4XIUDt_CDOHWPhsv_aKHiWh3twoxOpHv7-Odht1p-rt2z78fq-Wm4zSWoUs4UusJRUFIRqhhZlVSDMSoxVgTQlrGSCSFVo0VAlGCWNkJJQihZNW8hGtA2dg8dprgvR8CBNVPIgnbXJEsfJYlnQBFUTlNyF4JXmR28G4U-J4GOGvOOXDPmYIUdlqlH6NEmPIkjR6xSFNOGir2tGUFUn7mXiVDL7bZQfb1FWqtb48ZTWmf-X_QJnko2w</recordid><startdate>20071215</startdate><enddate>20071215</enddate><creator>Bondi, K.S.</creator><creator>Gangopadhyay, A.K.</creator><creator>Marine, Z.</creator><creator>Kim, T.H.</creator><creator>Mukhopadhyay, Anindita</creator><creator>Goldman, A.I.</creator><creator>Buhro, William E.</creator><creator>Kelton, K.F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20071215</creationdate><title>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</title><author>Bondi, K.S. ; Gangopadhyay, A.K. ; Marine, Z. ; Kim, T.H. ; Mukhopadhyay, Anindita ; Goldman, A.I. ; Buhro, William E. ; Kelton, K.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-5f41cc3a423f705684017611e40f32767a2ce4fab3ea732bacc23305bd4cbadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>ALLOYS</topic><topic>Amorphous metals</topic><topic>CALORIMETRY</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>CRYSTALLIZATION</topic><topic>DIFFERENTIAL THERMAL ANALYSIS</topic><topic>Diffusion and transport</topic><topic>Disordered solids</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>GLASS</topic><topic>Glass formation</topic><topic>Glass transition</topic><topic>Glass transitions</topic><topic>Glasses</topic><topic>MATERIALS SCIENCE</topic><topic>Medium-range order</topic><topic>metallic glasses</topic><topic>Nano-composites</topic><topic>NUCLEATION</topic><topic>Physics</topic><topic>Rare-earth in glasses</topic><topic>Short-range order</topic><topic>Specific phase transitions</topic><topic>STABILITY</topic><topic>STEM/TEM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Synchrotron radiation</topic><topic>Thermodynamics</topic><topic>TRANSITION ELEMENTS</topic><topic>Transition metals</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Viscosity</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondi, K.S.</creatorcontrib><creatorcontrib>Gangopadhyay, A.K.</creatorcontrib><creatorcontrib>Marine, Z.</creatorcontrib><creatorcontrib>Kim, T.H.</creatorcontrib><creatorcontrib>Mukhopadhyay, Anindita</creatorcontrib><creatorcontrib>Goldman, A.I.</creatorcontrib><creatorcontrib>Buhro, William E.</creatorcontrib><creatorcontrib>Kelton, K.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of non-crystalline solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondi, K.S.</au><au>Gangopadhyay, A.K.</au><au>Marine, Z.</au><au>Kim, T.H.</au><au>Mukhopadhyay, Anindita</au><au>Goldman, A.I.</au><au>Buhro, William E.</au><au>Kelton, K.F.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys</atitle><jtitle>Journal of non-crystalline solids</jtitle><date>2007-12-15</date><risdate>2007</risdate><volume>353</volume><issue>52-54</issue><spage>4723</spage><epage>4731</epage><pages>4723-4731</pages><issn>0022-3093</issn><eissn>1873-4812</eissn><coden>JNCSBJ</coden><abstract>The effects of microalloying on glass formation and stability were systematically investigated by substituting 0.5at.% of all 3d transition metals for Al in Al88Y7Fe5 alloys. X-ray diffraction and isothermal differential scanning calorimetry studies indicate that samples containing microadditions of Ti, V, Cr, Mn, Fe and Co were amorphous, while those alloyed with Ni and Cu were not. The onset temperatures for crystallization (devitrification) of the amorphous alloys were increased with microalloying and some showed a supercooled liquid region (ΔTx=Tx −Tg) of up to 40°C. In addition, microalloying changes the glass structure and the devitrification sequence, as determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and high energy X-ray diffraction. The results presented here suggest that the order induced in the alloy by the transition metal microaddition decreases the atomic mobility in the glass and raises the barrier for the nucleation of α-Al, the primary devitrifying phase in most cases. New intermetallic phases also appear with microalloying and vary for different transition metal additions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnoncrysol.2007.06.063</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3093 |
ispartof | Journal of non-crystalline solids, 2007-12, Vol.353 (52-54), p.4723-4731 |
issn | 0022-3093 1873-4812 |
language | eng |
recordid | cdi_osti_scitechconnect_1007643 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | ALLOYS Amorphous metals CALORIMETRY Condensed matter: structure, mechanical and thermal properties CRYSTALLIZATION DIFFERENTIAL THERMAL ANALYSIS Diffusion and transport Disordered solids Equations of state, phase equilibria, and phase transitions Exact sciences and technology GLASS Glass formation Glass transition Glass transitions Glasses MATERIALS SCIENCE Medium-range order metallic glasses Nano-composites NUCLEATION Physics Rare-earth in glasses Short-range order Specific phase transitions STABILITY STEM/TEM Structure of solids and liquids crystallography Synchrotron radiation Thermodynamics TRANSITION ELEMENTS Transition metals TRANSMISSION ELECTRON MICROSCOPY Viscosity X-RAY DIFFRACTION |
title | Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20microalloying%20with%203d%20transition%20metals%20on%20glass%20formation%20in%20AlYFe%20alloys&rft.jtitle=Journal%20of%20non-crystalline%20solids&rft.au=Bondi,%20K.S.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2007-12-15&rft.volume=353&rft.issue=52-54&rft.spage=4723&rft.epage=4731&rft.pages=4723-4731&rft.issn=0022-3093&rft.eissn=1873-4812&rft.coden=JNCSBJ&rft_id=info:doi/10.1016/j.jnoncrysol.2007.06.063&rft_dat=%3Celsevier_osti_%3ES0022309307007405%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022309307007405&rfr_iscdi=true |