Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system
Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular rea...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2009-12, Vol.43 (20), p.5005-5014 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5014 |
---|---|
container_issue | 20 |
container_start_page | 5005 |
container_title | Water research (Oxford) |
container_volume | 43 |
creator | Szabo, Jeffrey G. Impellitteri, Christopher A. Govindaswamy, Shekar Hall, John S. |
description | Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100
mg
L
−1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5
M ammonia and 0.36
M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively. |
doi_str_mv | 10.1016/j.watres.2009.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1005994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135409005156</els_id><sourcerecordid>1671568186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</originalsourceid><addsrcrecordid>eNqF0k2LFDEQBuBGFHdc_QeiQRC9zFj57M5FkMUvWFDQPYd0uno243Qym2SU_fem7UFv6ymHPKlU6k3TPKWwoUDVm93mly0J84YB6A10G6DsXrOiXavXTIjufrMCEHxNuRRnzaOcdwDAGNcPmzOqW6ZA6VVz_RVT9rlgcEhsGMiALoZiJx9s8TGQOJJ8TClubUGS7OCjz7HEA2biA7FkigPuyZB8-OHDltSeMJGhVky-P_6pkG9r-elx82C0-4xPTut5c_Xh_feLT-vLLx8_X7y7XDsJbVm7UWLvKLYjZY7xXnYg0fKWUta2VDOred1QVgLC2Cs9c2QghWir4j0_b14sdWMu3mTnC7rr-qSArhgKILUWFb1a0CHFmyPmYiafHe73NmA8ZtMKBUCl7v4vuaCKSyWrfH2npKqlUnW0U5WKhboUc044mkPyk023tUEzh2t2ZgnXzOEa6EwNtx57drrh2E84_Dt0SrOClydgs7P7MdngfP7ravhC0Q6qe7640UZjt6maq28MKAdaZ8zl_Ji3i8Aa1U-PaZ7k_EcGn-ZBDtHf3etvm6jOFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671568186</pqid></control><display><type>article</type><title>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Szabo, Jeffrey G. ; Impellitteri, Christopher A. ; Govindaswamy, Shekar ; Hall, John S.</creator><creatorcontrib>Szabo, Jeffrey G. ; Impellitteri, Christopher A. ; Govindaswamy, Shekar ; Hall, John S. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100
mg
L
−1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5
M ammonia and 0.36
M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2009.08.012</identifier><identifier>PMID: 19726069</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ABSORPTION ; AMMONIA ; Ammonia - chemistry ; Applied sciences ; Biofilm ; Biofilms - growth & development ; Bioreactors - microbiology ; CESIUM ; CESIUM 137 ; CESIUM CHLORIDES ; Cesium Radioisotopes - analysis ; chemical degradation ; Chlorides ; CHLORINE ; COBALT ; COBALT 60 ; COBALT CHLORIDES ; Cobalt Radioisotopes - analysis ; CONTAMINATION ; Corrosion ; DECONTAMINATION ; Decontamination - methods ; DISTRIBUTION ; DRINKING WATER ; Environmental Restoration and Remediation - methods ; ENVIRONMENTAL SCIENCES ; Ethanol - chemistry ; Exact sciences and technology ; Halogenation ; Infrastructure ; IRON ; Mathematical models ; Microscopy, Electron, Scanning ; MONITORING ; Other industrial wastes. Sewage sludge ; oxidation ; Persistence ; pollutants ; Pollution ; provenance ; Radioisotope ; RADIOISOTOPES ; radionuclides ; SHEAR ; SPECTROSCOPY ; SULFURIC ACID ; Sulfuric Acids - chemistry ; VALENCE ; Wastes ; Water Pollutants, Radioactive - analysis ; Water Purification ; Water Supply - analysis ; water treatment ; Water treatment and pollution ; X-Ray Absorption Spectroscopy</subject><ispartof>Water research (Oxford), 2009-12, Vol.43 (20), p.5005-5014</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</citedby><cites>FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2009.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22346180$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19726069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1005994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabo, Jeffrey G.</creatorcontrib><creatorcontrib>Impellitteri, Christopher A.</creatorcontrib><creatorcontrib>Govindaswamy, Shekar</creatorcontrib><creatorcontrib>Hall, John S.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100
mg
L
−1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5
M ammonia and 0.36
M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.</description><subject>ABSORPTION</subject><subject>AMMONIA</subject><subject>Ammonia - chemistry</subject><subject>Applied sciences</subject><subject>Biofilm</subject><subject>Biofilms - growth & development</subject><subject>Bioreactors - microbiology</subject><subject>CESIUM</subject><subject>CESIUM 137</subject><subject>CESIUM CHLORIDES</subject><subject>Cesium Radioisotopes - analysis</subject><subject>chemical degradation</subject><subject>Chlorides</subject><subject>CHLORINE</subject><subject>COBALT</subject><subject>COBALT 60</subject><subject>COBALT CHLORIDES</subject><subject>Cobalt Radioisotopes - analysis</subject><subject>CONTAMINATION</subject><subject>Corrosion</subject><subject>DECONTAMINATION</subject><subject>Decontamination - methods</subject><subject>DISTRIBUTION</subject><subject>DRINKING WATER</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Ethanol - chemistry</subject><subject>Exact sciences and technology</subject><subject>Halogenation</subject><subject>Infrastructure</subject><subject>IRON</subject><subject>Mathematical models</subject><subject>Microscopy, Electron, Scanning</subject><subject>MONITORING</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>oxidation</subject><subject>Persistence</subject><subject>pollutants</subject><subject>Pollution</subject><subject>provenance</subject><subject>Radioisotope</subject><subject>RADIOISOTOPES</subject><subject>radionuclides</subject><subject>SHEAR</subject><subject>SPECTROSCOPY</subject><subject>SULFURIC ACID</subject><subject>Sulfuric Acids - chemistry</subject><subject>VALENCE</subject><subject>Wastes</subject><subject>Water Pollutants, Radioactive - analysis</subject><subject>Water Purification</subject><subject>Water Supply - analysis</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k2LFDEQBuBGFHdc_QeiQRC9zFj57M5FkMUvWFDQPYd0uno243Qym2SU_fem7UFv6ymHPKlU6k3TPKWwoUDVm93mly0J84YB6A10G6DsXrOiXavXTIjufrMCEHxNuRRnzaOcdwDAGNcPmzOqW6ZA6VVz_RVT9rlgcEhsGMiALoZiJx9s8TGQOJJ8TClubUGS7OCjz7HEA2biA7FkigPuyZB8-OHDltSeMJGhVky-P_6pkG9r-elx82C0-4xPTut5c_Xh_feLT-vLLx8_X7y7XDsJbVm7UWLvKLYjZY7xXnYg0fKWUta2VDOred1QVgLC2Cs9c2QghWir4j0_b14sdWMu3mTnC7rr-qSArhgKILUWFb1a0CHFmyPmYiafHe73NmA8ZtMKBUCl7v4vuaCKSyWrfH2npKqlUnW0U5WKhboUc044mkPyk023tUEzh2t2ZgnXzOEa6EwNtx57drrh2E84_Dt0SrOClydgs7P7MdngfP7ravhC0Q6qe7640UZjt6maq28MKAdaZ8zl_Ji3i8Aa1U-PaZ7k_EcGn-ZBDtHf3etvm6jOFA</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Szabo, Jeffrey G.</creator><creator>Impellitteri, Christopher A.</creator><creator>Govindaswamy, Shekar</creator><creator>Hall, John S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20091201</creationdate><title>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</title><author>Szabo, Jeffrey G. ; Impellitteri, Christopher A. ; Govindaswamy, Shekar ; Hall, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ABSORPTION</topic><topic>AMMONIA</topic><topic>Ammonia - chemistry</topic><topic>Applied sciences</topic><topic>Biofilm</topic><topic>Biofilms - growth & development</topic><topic>Bioreactors - microbiology</topic><topic>CESIUM</topic><topic>CESIUM 137</topic><topic>CESIUM CHLORIDES</topic><topic>Cesium Radioisotopes - analysis</topic><topic>chemical degradation</topic><topic>Chlorides</topic><topic>CHLORINE</topic><topic>COBALT</topic><topic>COBALT 60</topic><topic>COBALT CHLORIDES</topic><topic>Cobalt Radioisotopes - analysis</topic><topic>CONTAMINATION</topic><topic>Corrosion</topic><topic>DECONTAMINATION</topic><topic>Decontamination - methods</topic><topic>DISTRIBUTION</topic><topic>DRINKING WATER</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Ethanol - chemistry</topic><topic>Exact sciences and technology</topic><topic>Halogenation</topic><topic>Infrastructure</topic><topic>IRON</topic><topic>Mathematical models</topic><topic>Microscopy, Electron, Scanning</topic><topic>MONITORING</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>oxidation</topic><topic>Persistence</topic><topic>pollutants</topic><topic>Pollution</topic><topic>provenance</topic><topic>Radioisotope</topic><topic>RADIOISOTOPES</topic><topic>radionuclides</topic><topic>SHEAR</topic><topic>SPECTROSCOPY</topic><topic>SULFURIC ACID</topic><topic>Sulfuric Acids - chemistry</topic><topic>VALENCE</topic><topic>Wastes</topic><topic>Water Pollutants, Radioactive - analysis</topic><topic>Water Purification</topic><topic>Water Supply - analysis</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabo, Jeffrey G.</creatorcontrib><creatorcontrib>Impellitteri, Christopher A.</creatorcontrib><creatorcontrib>Govindaswamy, Shekar</creatorcontrib><creatorcontrib>Hall, John S.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabo, Jeffrey G.</au><au>Impellitteri, Christopher A.</au><au>Govindaswamy, Shekar</au><au>Hall, John S.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>43</volume><issue>20</issue><spage>5005</spage><epage>5014</epage><pages>5005-5014</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100
mg
L
−1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5
M ammonia and 0.36
M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19726069</pmid><doi>10.1016/j.watres.2009.08.012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2009-12, Vol.43 (20), p.5005-5014 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_osti_scitechconnect_1005994 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | ABSORPTION AMMONIA Ammonia - chemistry Applied sciences Biofilm Biofilms - growth & development Bioreactors - microbiology CESIUM CESIUM 137 CESIUM CHLORIDES Cesium Radioisotopes - analysis chemical degradation Chlorides CHLORINE COBALT COBALT 60 COBALT CHLORIDES Cobalt Radioisotopes - analysis CONTAMINATION Corrosion DECONTAMINATION Decontamination - methods DISTRIBUTION DRINKING WATER Environmental Restoration and Remediation - methods ENVIRONMENTAL SCIENCES Ethanol - chemistry Exact sciences and technology Halogenation Infrastructure IRON Mathematical models Microscopy, Electron, Scanning MONITORING Other industrial wastes. Sewage sludge oxidation Persistence pollutants Pollution provenance Radioisotope RADIOISOTOPES radionuclides SHEAR SPECTROSCOPY SULFURIC ACID Sulfuric Acids - chemistry VALENCE Wastes Water Pollutants, Radioactive - analysis Water Purification Water Supply - analysis water treatment Water treatment and pollution X-Ray Absorption Spectroscopy |
title | Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistence%20and%20decontamination%20of%20surrogate%20radioisotopes%20in%20a%20model%20drinking%20water%20distribution%20system&rft.jtitle=Water%20research%20(Oxford)&rft.au=Szabo,%20Jeffrey%20G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-12-01&rft.volume=43&rft.issue=20&rft.spage=5005&rft.epage=5014&rft.pages=5005-5014&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2009.08.012&rft_dat=%3Cproquest_osti_%3E1671568186%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671568186&rft_id=info:pmid/19726069&rft_els_id=S0043135409005156&rfr_iscdi=true |