Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system

Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2009-12, Vol.43 (20), p.5005-5014
Hauptverfasser: Szabo, Jeffrey G., Impellitteri, Christopher A., Govindaswamy, Shekar, Hall, John S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5014
container_issue 20
container_start_page 5005
container_title Water research (Oxford)
container_volume 43
creator Szabo, Jeffrey G.
Impellitteri, Christopher A.
Govindaswamy, Shekar
Hall, John S.
description Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L −1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.
doi_str_mv 10.1016/j.watres.2009.08.012
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1005994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135409005156</els_id><sourcerecordid>1671568186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</originalsourceid><addsrcrecordid>eNqF0k2LFDEQBuBGFHdc_QeiQRC9zFj57M5FkMUvWFDQPYd0uno243Qym2SU_fem7UFv6ymHPKlU6k3TPKWwoUDVm93mly0J84YB6A10G6DsXrOiXavXTIjufrMCEHxNuRRnzaOcdwDAGNcPmzOqW6ZA6VVz_RVT9rlgcEhsGMiALoZiJx9s8TGQOJJ8TClubUGS7OCjz7HEA2biA7FkigPuyZB8-OHDltSeMJGhVky-P_6pkG9r-elx82C0-4xPTut5c_Xh_feLT-vLLx8_X7y7XDsJbVm7UWLvKLYjZY7xXnYg0fKWUta2VDOred1QVgLC2Cs9c2QghWir4j0_b14sdWMu3mTnC7rr-qSArhgKILUWFb1a0CHFmyPmYiafHe73NmA8ZtMKBUCl7v4vuaCKSyWrfH2npKqlUnW0U5WKhboUc044mkPyk023tUEzh2t2ZgnXzOEa6EwNtx57drrh2E84_Dt0SrOClydgs7P7MdngfP7ravhC0Q6qe7640UZjt6maq28MKAdaZ8zl_Ji3i8Aa1U-PaZ7k_EcGn-ZBDtHf3etvm6jOFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671568186</pqid></control><display><type>article</type><title>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Szabo, Jeffrey G. ; Impellitteri, Christopher A. ; Govindaswamy, Shekar ; Hall, John S.</creator><creatorcontrib>Szabo, Jeffrey G. ; Impellitteri, Christopher A. ; Govindaswamy, Shekar ; Hall, John S. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L −1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2009.08.012</identifier><identifier>PMID: 19726069</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ABSORPTION ; AMMONIA ; Ammonia - chemistry ; Applied sciences ; Biofilm ; Biofilms - growth &amp; development ; Bioreactors - microbiology ; CESIUM ; CESIUM 137 ; CESIUM CHLORIDES ; Cesium Radioisotopes - analysis ; chemical degradation ; Chlorides ; CHLORINE ; COBALT ; COBALT 60 ; COBALT CHLORIDES ; Cobalt Radioisotopes - analysis ; CONTAMINATION ; Corrosion ; DECONTAMINATION ; Decontamination - methods ; DISTRIBUTION ; DRINKING WATER ; Environmental Restoration and Remediation - methods ; ENVIRONMENTAL SCIENCES ; Ethanol - chemistry ; Exact sciences and technology ; Halogenation ; Infrastructure ; IRON ; Mathematical models ; Microscopy, Electron, Scanning ; MONITORING ; Other industrial wastes. Sewage sludge ; oxidation ; Persistence ; pollutants ; Pollution ; provenance ; Radioisotope ; RADIOISOTOPES ; radionuclides ; SHEAR ; SPECTROSCOPY ; SULFURIC ACID ; Sulfuric Acids - chemistry ; VALENCE ; Wastes ; Water Pollutants, Radioactive - analysis ; Water Purification ; Water Supply - analysis ; water treatment ; Water treatment and pollution ; X-Ray Absorption Spectroscopy</subject><ispartof>Water research (Oxford), 2009-12, Vol.43 (20), p.5005-5014</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</citedby><cites>FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.watres.2009.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22346180$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19726069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1005994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabo, Jeffrey G.</creatorcontrib><creatorcontrib>Impellitteri, Christopher A.</creatorcontrib><creatorcontrib>Govindaswamy, Shekar</creatorcontrib><creatorcontrib>Hall, John S.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L −1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.</description><subject>ABSORPTION</subject><subject>AMMONIA</subject><subject>Ammonia - chemistry</subject><subject>Applied sciences</subject><subject>Biofilm</subject><subject>Biofilms - growth &amp; development</subject><subject>Bioreactors - microbiology</subject><subject>CESIUM</subject><subject>CESIUM 137</subject><subject>CESIUM CHLORIDES</subject><subject>Cesium Radioisotopes - analysis</subject><subject>chemical degradation</subject><subject>Chlorides</subject><subject>CHLORINE</subject><subject>COBALT</subject><subject>COBALT 60</subject><subject>COBALT CHLORIDES</subject><subject>Cobalt Radioisotopes - analysis</subject><subject>CONTAMINATION</subject><subject>Corrosion</subject><subject>DECONTAMINATION</subject><subject>Decontamination - methods</subject><subject>DISTRIBUTION</subject><subject>DRINKING WATER</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Ethanol - chemistry</subject><subject>Exact sciences and technology</subject><subject>Halogenation</subject><subject>Infrastructure</subject><subject>IRON</subject><subject>Mathematical models</subject><subject>Microscopy, Electron, Scanning</subject><subject>MONITORING</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>oxidation</subject><subject>Persistence</subject><subject>pollutants</subject><subject>Pollution</subject><subject>provenance</subject><subject>Radioisotope</subject><subject>RADIOISOTOPES</subject><subject>radionuclides</subject><subject>SHEAR</subject><subject>SPECTROSCOPY</subject><subject>SULFURIC ACID</subject><subject>Sulfuric Acids - chemistry</subject><subject>VALENCE</subject><subject>Wastes</subject><subject>Water Pollutants, Radioactive - analysis</subject><subject>Water Purification</subject><subject>Water Supply - analysis</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k2LFDEQBuBGFHdc_QeiQRC9zFj57M5FkMUvWFDQPYd0uno243Qym2SU_fem7UFv6ymHPKlU6k3TPKWwoUDVm93mly0J84YB6A10G6DsXrOiXavXTIjufrMCEHxNuRRnzaOcdwDAGNcPmzOqW6ZA6VVz_RVT9rlgcEhsGMiALoZiJx9s8TGQOJJ8TClubUGS7OCjz7HEA2biA7FkigPuyZB8-OHDltSeMJGhVky-P_6pkG9r-elx82C0-4xPTut5c_Xh_feLT-vLLx8_X7y7XDsJbVm7UWLvKLYjZY7xXnYg0fKWUta2VDOred1QVgLC2Cs9c2QghWir4j0_b14sdWMu3mTnC7rr-qSArhgKILUWFb1a0CHFmyPmYiafHe73NmA8ZtMKBUCl7v4vuaCKSyWrfH2npKqlUnW0U5WKhboUc044mkPyk023tUEzh2t2ZgnXzOEa6EwNtx57drrh2E84_Dt0SrOClydgs7P7MdngfP7ravhC0Q6qe7640UZjt6maq28MKAdaZ8zl_Ji3i8Aa1U-PaZ7k_EcGn-ZBDtHf3etvm6jOFA</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Szabo, Jeffrey G.</creator><creator>Impellitteri, Christopher A.</creator><creator>Govindaswamy, Shekar</creator><creator>Hall, John S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>20091201</creationdate><title>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</title><author>Szabo, Jeffrey G. ; Impellitteri, Christopher A. ; Govindaswamy, Shekar ; Hall, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-cf5ebc1e7f12c23b5805ea3711277192a9312c6a50e0fb69f5ebe205447a373b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ABSORPTION</topic><topic>AMMONIA</topic><topic>Ammonia - chemistry</topic><topic>Applied sciences</topic><topic>Biofilm</topic><topic>Biofilms - growth &amp; development</topic><topic>Bioreactors - microbiology</topic><topic>CESIUM</topic><topic>CESIUM 137</topic><topic>CESIUM CHLORIDES</topic><topic>Cesium Radioisotopes - analysis</topic><topic>chemical degradation</topic><topic>Chlorides</topic><topic>CHLORINE</topic><topic>COBALT</topic><topic>COBALT 60</topic><topic>COBALT CHLORIDES</topic><topic>Cobalt Radioisotopes - analysis</topic><topic>CONTAMINATION</topic><topic>Corrosion</topic><topic>DECONTAMINATION</topic><topic>Decontamination - methods</topic><topic>DISTRIBUTION</topic><topic>DRINKING WATER</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Ethanol - chemistry</topic><topic>Exact sciences and technology</topic><topic>Halogenation</topic><topic>Infrastructure</topic><topic>IRON</topic><topic>Mathematical models</topic><topic>Microscopy, Electron, Scanning</topic><topic>MONITORING</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>oxidation</topic><topic>Persistence</topic><topic>pollutants</topic><topic>Pollution</topic><topic>provenance</topic><topic>Radioisotope</topic><topic>RADIOISOTOPES</topic><topic>radionuclides</topic><topic>SHEAR</topic><topic>SPECTROSCOPY</topic><topic>SULFURIC ACID</topic><topic>Sulfuric Acids - chemistry</topic><topic>VALENCE</topic><topic>Wastes</topic><topic>Water Pollutants, Radioactive - analysis</topic><topic>Water Purification</topic><topic>Water Supply - analysis</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabo, Jeffrey G.</creatorcontrib><creatorcontrib>Impellitteri, Christopher A.</creatorcontrib><creatorcontrib>Govindaswamy, Shekar</creatorcontrib><creatorcontrib>Hall, John S.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabo, Jeffrey G.</au><au>Impellitteri, Christopher A.</au><au>Govindaswamy, Shekar</au><au>Hall, John S.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>43</volume><issue>20</issue><spage>5005</spage><epage>5014</epage><pages>5005-5014</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L −1 solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19726069</pmid><doi>10.1016/j.watres.2009.08.012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2009-12, Vol.43 (20), p.5005-5014
issn 0043-1354
1879-2448
language eng
recordid cdi_osti_scitechconnect_1005994
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects ABSORPTION
AMMONIA
Ammonia - chemistry
Applied sciences
Biofilm
Biofilms - growth & development
Bioreactors - microbiology
CESIUM
CESIUM 137
CESIUM CHLORIDES
Cesium Radioisotopes - analysis
chemical degradation
Chlorides
CHLORINE
COBALT
COBALT 60
COBALT CHLORIDES
Cobalt Radioisotopes - analysis
CONTAMINATION
Corrosion
DECONTAMINATION
Decontamination - methods
DISTRIBUTION
DRINKING WATER
Environmental Restoration and Remediation - methods
ENVIRONMENTAL SCIENCES
Ethanol - chemistry
Exact sciences and technology
Halogenation
Infrastructure
IRON
Mathematical models
Microscopy, Electron, Scanning
MONITORING
Other industrial wastes. Sewage sludge
oxidation
Persistence
pollutants
Pollution
provenance
Radioisotope
RADIOISOTOPES
radionuclides
SHEAR
SPECTROSCOPY
SULFURIC ACID
Sulfuric Acids - chemistry
VALENCE
Wastes
Water Pollutants, Radioactive - analysis
Water Purification
Water Supply - analysis
water treatment
Water treatment and pollution
X-Ray Absorption Spectroscopy
title Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistence%20and%20decontamination%20of%20surrogate%20radioisotopes%20in%20a%20model%20drinking%20water%20distribution%20system&rft.jtitle=Water%20research%20(Oxford)&rft.au=Szabo,%20Jeffrey%20G.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-12-01&rft.volume=43&rft.issue=20&rft.spage=5005&rft.epage=5014&rft.pages=5005-5014&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2009.08.012&rft_dat=%3Cproquest_osti_%3E1671568186%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671568186&rft_id=info:pmid/19726069&rft_els_id=S0043135409005156&rfr_iscdi=true