A Pulse Shape Analysis technique for the MAJORANA experiment

In order to achieve background count rates sufficiently low so as to allow the observation of rare events such as neutrinoless double beta (0νββ) decay, background suppression techniques are routinely employed. In this paper we present details of a novel Pulse Shape Analysis algorithm, which allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2011-02, Vol.629 (1), p.303-310
Hauptverfasser: Cooper, R.J., Radford, D.C., Lagergren, K., Colaresi, James F., Darken, Larry, Henning, R., Marino, M.G., Michael Yocum, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 1
container_start_page 303
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 629
creator Cooper, R.J.
Radford, D.C.
Lagergren, K.
Colaresi, James F.
Darken, Larry
Henning, R.
Marino, M.G.
Michael Yocum, K.
description In order to achieve background count rates sufficiently low so as to allow the observation of rare events such as neutrinoless double beta (0νββ) decay, background suppression techniques are routinely employed. In this paper we present details of a novel Pulse Shape Analysis algorithm, which allows single-site events such as 0νββ decay to be distinguished from multi-site background events in germanium detectors. The algorithm, which is based on the event-by-event χ 2 fitting of experimental signals to a basis data set of unique single-site pulse shapes, has been developed through simulation studies and tested experimentally using a Broad Energy Germanium detector. It is found experimentally that the technique is able to successfully identify and reject 99% of multi-site events in the single escape peak associated with the gamma decay of 208Tl, whilst maintaining a survival probability of 98% for neutrinoless double-beta-decay-like double escape peak events.
doi_str_mv 10.1016/j.nima.2010.11.029
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1005185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900210024915</els_id><sourcerecordid>1671287859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b92764b781afc148c4706cdd4be6df83e4158526f9d618dd6ba0f2551352e4813</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhFnLgkeJ3YcaReooqnCkU8zlbibFRXaRLsFNF_j6NwZi8rrb5ZzQwhl0AjoCButlFrdkXE6HiAiLLsiMxApizMeCqOycxDMswoZafkzLkt9ZOlckYWefC6bxwG75uixyBvi-bgjAsG1JvWfO0xqDsbDBsMnvOn9Vv-kgf406M1O2yHc3JSF1588bfn5PPu9mP5EK7W94_LfBXqWNAhLDOWiqRMJRS1hkTqJKVCV1VSoqhqGWMCXHIm6qwSIKtKlAWtGecQc4aJhHhOrqa_nRuMctqM7nTXtqgHBZRykNxD1xPU2877doPaGaexaYoWu71TIFJgMpU88yibUG075yzWqveBCnvwz9TYp9qqsU819qkAlO_TixaTCH3Sb4N2NIKtxsrY0UfVmf_kv_s2e8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671287859</pqid></control><display><type>article</type><title>A Pulse Shape Analysis technique for the MAJORANA experiment</title><source>Elsevier ScienceDirect Journals</source><creator>Cooper, R.J. ; Radford, D.C. ; Lagergren, K. ; Colaresi, James F. ; Darken, Larry ; Henning, R. ; Marino, M.G. ; Michael Yocum, K.</creator><creatorcontrib>Cooper, R.J. ; Radford, D.C. ; Lagergren, K. ; Colaresi, James F. ; Darken, Larry ; Henning, R. ; Marino, M.G. ; Michael Yocum, K. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Holifield Radioactive Ion Beam Facility</creatorcontrib><description>In order to achieve background count rates sufficiently low so as to allow the observation of rare events such as neutrinoless double beta (0νββ) decay, background suppression techniques are routinely employed. In this paper we present details of a novel Pulse Shape Analysis algorithm, which allows single-site events such as 0νββ decay to be distinguished from multi-site background events in germanium detectors. The algorithm, which is based on the event-by-event χ 2 fitting of experimental signals to a basis data set of unique single-site pulse shapes, has been developed through simulation studies and tested experimentally using a Broad Energy Germanium detector. It is found experimentally that the technique is able to successfully identify and reject 99% of multi-site events in the single escape peak associated with the gamma decay of 208Tl, whilst maintaining a survival probability of 98% for neutrinoless double-beta-decay-like double escape peak events.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2010.11.029</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Accelerators ; ALGORITHMS ; BACKGROUND RADIATION ; Background rejection ; Beta ; Counting ; Decay ; Detectors ; DOUBLE BETA DECAY ; ESCAPE PEAKS ; GAMMA DECAY ; GE SEMICONDUCTOR DETECTORS ; HPGe detector ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; MITIGATION ; Neutrinoless double beta decay ; Pulse shape ; Pulse Shape Analysis ; PULSE SHAPERS ; Survival</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2011-02, Vol.629 (1), p.303-310</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b92764b781afc148c4706cdd4be6df83e4158526f9d618dd6ba0f2551352e4813</citedby><cites>FETCH-LOGICAL-c360t-b92764b781afc148c4706cdd4be6df83e4158526f9d618dd6ba0f2551352e4813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2010.11.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1005185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, R.J.</creatorcontrib><creatorcontrib>Radford, D.C.</creatorcontrib><creatorcontrib>Lagergren, K.</creatorcontrib><creatorcontrib>Colaresi, James F.</creatorcontrib><creatorcontrib>Darken, Larry</creatorcontrib><creatorcontrib>Henning, R.</creatorcontrib><creatorcontrib>Marino, M.G.</creatorcontrib><creatorcontrib>Michael Yocum, K.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Holifield Radioactive Ion Beam Facility</creatorcontrib><title>A Pulse Shape Analysis technique for the MAJORANA experiment</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>In order to achieve background count rates sufficiently low so as to allow the observation of rare events such as neutrinoless double beta (0νββ) decay, background suppression techniques are routinely employed. In this paper we present details of a novel Pulse Shape Analysis algorithm, which allows single-site events such as 0νββ decay to be distinguished from multi-site background events in germanium detectors. The algorithm, which is based on the event-by-event χ 2 fitting of experimental signals to a basis data set of unique single-site pulse shapes, has been developed through simulation studies and tested experimentally using a Broad Energy Germanium detector. It is found experimentally that the technique is able to successfully identify and reject 99% of multi-site events in the single escape peak associated with the gamma decay of 208Tl, whilst maintaining a survival probability of 98% for neutrinoless double-beta-decay-like double escape peak events.</description><subject>Accelerators</subject><subject>ALGORITHMS</subject><subject>BACKGROUND RADIATION</subject><subject>Background rejection</subject><subject>Beta</subject><subject>Counting</subject><subject>Decay</subject><subject>Detectors</subject><subject>DOUBLE BETA DECAY</subject><subject>ESCAPE PEAKS</subject><subject>GAMMA DECAY</subject><subject>GE SEMICONDUCTOR DETECTORS</subject><subject>HPGe detector</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>MITIGATION</subject><subject>Neutrinoless double beta decay</subject><subject>Pulse shape</subject><subject>Pulse Shape Analysis</subject><subject>PULSE SHAPERS</subject><subject>Survival</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhFnLgkeJ3YcaReooqnCkU8zlbibFRXaRLsFNF_j6NwZi8rrb5ZzQwhl0AjoCButlFrdkXE6HiAiLLsiMxApizMeCqOycxDMswoZafkzLkt9ZOlckYWefC6bxwG75uixyBvi-bgjAsG1JvWfO0xqDsbDBsMnvOn9Vv-kgf406M1O2yHc3JSF1588bfn5PPu9mP5EK7W94_LfBXqWNAhLDOWiqRMJRS1hkTqJKVCV1VSoqhqGWMCXHIm6qwSIKtKlAWtGecQc4aJhHhOrqa_nRuMctqM7nTXtqgHBZRykNxD1xPU2877doPaGaexaYoWu71TIFJgMpU88yibUG075yzWqveBCnvwz9TYp9qqsU819qkAlO_TixaTCH3Sb4N2NIKtxsrY0UfVmf_kv_s2e8A</recordid><startdate>20110211</startdate><enddate>20110211</enddate><creator>Cooper, R.J.</creator><creator>Radford, D.C.</creator><creator>Lagergren, K.</creator><creator>Colaresi, James F.</creator><creator>Darken, Larry</creator><creator>Henning, R.</creator><creator>Marino, M.G.</creator><creator>Michael Yocum, K.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110211</creationdate><title>A Pulse Shape Analysis technique for the MAJORANA experiment</title><author>Cooper, R.J. ; Radford, D.C. ; Lagergren, K. ; Colaresi, James F. ; Darken, Larry ; Henning, R. ; Marino, M.G. ; Michael Yocum, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b92764b781afc148c4706cdd4be6df83e4158526f9d618dd6ba0f2551352e4813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accelerators</topic><topic>ALGORITHMS</topic><topic>BACKGROUND RADIATION</topic><topic>Background rejection</topic><topic>Beta</topic><topic>Counting</topic><topic>Decay</topic><topic>Detectors</topic><topic>DOUBLE BETA DECAY</topic><topic>ESCAPE PEAKS</topic><topic>GAMMA DECAY</topic><topic>GE SEMICONDUCTOR DETECTORS</topic><topic>HPGe detector</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>MITIGATION</topic><topic>Neutrinoless double beta decay</topic><topic>Pulse shape</topic><topic>Pulse Shape Analysis</topic><topic>PULSE SHAPERS</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, R.J.</creatorcontrib><creatorcontrib>Radford, D.C.</creatorcontrib><creatorcontrib>Lagergren, K.</creatorcontrib><creatorcontrib>Colaresi, James F.</creatorcontrib><creatorcontrib>Darken, Larry</creatorcontrib><creatorcontrib>Henning, R.</creatorcontrib><creatorcontrib>Marino, M.G.</creatorcontrib><creatorcontrib>Michael Yocum, K.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Holifield Radioactive Ion Beam Facility</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, R.J.</au><au>Radford, D.C.</au><au>Lagergren, K.</au><au>Colaresi, James F.</au><au>Darken, Larry</au><au>Henning, R.</au><au>Marino, M.G.</au><au>Michael Yocum, K.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Holifield Radioactive Ion Beam Facility</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pulse Shape Analysis technique for the MAJORANA experiment</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2011-02-11</date><risdate>2011</risdate><volume>629</volume><issue>1</issue><spage>303</spage><epage>310</epage><pages>303-310</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>In order to achieve background count rates sufficiently low so as to allow the observation of rare events such as neutrinoless double beta (0νββ) decay, background suppression techniques are routinely employed. In this paper we present details of a novel Pulse Shape Analysis algorithm, which allows single-site events such as 0νββ decay to be distinguished from multi-site background events in germanium detectors. The algorithm, which is based on the event-by-event χ 2 fitting of experimental signals to a basis data set of unique single-site pulse shapes, has been developed through simulation studies and tested experimentally using a Broad Energy Germanium detector. It is found experimentally that the technique is able to successfully identify and reject 99% of multi-site events in the single escape peak associated with the gamma decay of 208Tl, whilst maintaining a survival probability of 98% for neutrinoless double-beta-decay-like double escape peak events.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2010.11.029</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2011-02, Vol.629 (1), p.303-310
issn 0168-9002
1872-9576
language eng
recordid cdi_osti_scitechconnect_1005185
source Elsevier ScienceDirect Journals
subjects Accelerators
ALGORITHMS
BACKGROUND RADIATION
Background rejection
Beta
Counting
Decay
Detectors
DOUBLE BETA DECAY
ESCAPE PEAKS
GAMMA DECAY
GE SEMICONDUCTOR DETECTORS
HPGe detector
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
MITIGATION
Neutrinoless double beta decay
Pulse shape
Pulse Shape Analysis
PULSE SHAPERS
Survival
title A Pulse Shape Analysis technique for the MAJORANA experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pulse%20Shape%20Analysis%20technique%20for%20the%20MAJORANA%20experiment&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Cooper,%20R.J.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-02-11&rft.volume=629&rft.issue=1&rft.spage=303&rft.epage=310&rft.pages=303-310&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2010.11.029&rft_dat=%3Cproquest_osti_%3E1671287859%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671287859&rft_id=info:pmid/&rft_els_id=S0168900210024915&rfr_iscdi=true