Error handling strategies in multiphase inverse modeling

Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2011-06, Vol.37 (6), p.724-730
Hauptverfasser: Finsterle, Stefan, Zhang, Yingqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 6
container_start_page 724
container_title Computers & geosciences
container_volume 37
creator Finsterle, Stefan
Zhang, Yingqi
description Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
doi_str_mv 10.1016/j.cageo.2010.11.009
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1005170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300410003766</els_id><sourcerecordid>901660490</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-debfa75022ab0deae43e6ce642cd2e64507e58726b6f127729eaa41863e462593</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVIIZu0v6CHLoXSk93RhyX70ENZ0iaw0EOSs5iVx7tavNZW8gby7yPXS445DRqeeUfzMPaZQ8mB6x_70uGWQilg6vASoLlgC14bWZga5CVb5E5dSAB1xa5T2gOAEHW1YPVtjCEudzi0vR-2yzRGHGnrKS39sDyc-tEfd5gov54p5noILU3kR_ahwz7Rp3O9YU-_bx9Xd8X675_71a91gapWY9HSpkNT5W24gZaQlCTtSCvhWpFLBYaq2gi90R0XxoiGEBWvtSSlRdXIG_Z1zg1p9DY5P5LbuTAM5EbLASpuIEPfZ-gYw78TpdEefHLU9zhQOCXbZEkaVDORciZdDClF6uwx-gPGl5xlJ5d2b_-7tJNLy7nN5vLUt3M-Jod9F3FwPr2NCiUFr6TJ3JeZ6zBY3MbMPD3kIJ19a1nJaf_PmaDs7NlTnE6iwVHr43RRG_y7P3kFVmGSxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901660490</pqid></control><display><type>article</type><title>Error handling strategies in multiphase inverse modeling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Finsterle, Stefan ; Zhang, Yingqi</creator><creatorcontrib>Finsterle, Stefan ; Zhang, Yingqi ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2010.11.009</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>54 ; 58 ; computers ; CONVERGENCE ; Earth sciences ; Earth, ocean, space ; Errors ; EVALUATION ; Exact sciences and technology ; Handling ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Inverse ; Inverse modeling ; iTOUGH2 ; least squares ; Materials handling ; Mathematical models ; Multiphase ; MULTIPHASE FLOW ; Residual analysis ; Robust estimation ; SIMULATION ; Soils ; Strategy ; Surficial geology ; TRANSPORT ; uncertainty</subject><ispartof>Computers &amp; geosciences, 2011-06, Vol.37 (6), p.724-730</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-debfa75022ab0deae43e6ce642cd2e64507e58726b6f127729eaa41863e462593</citedby><cites>FETCH-LOGICAL-a484t-debfa75022ab0deae43e6ce642cd2e64507e58726b6f127729eaa41863e462593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cageo.2010.11.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3548,23928,23929,25138,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24321537$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1005170$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Finsterle, Stefan</creatorcontrib><creatorcontrib>Zhang, Yingqi</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Error handling strategies in multiphase inverse modeling</title><title>Computers &amp; geosciences</title><description>Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.</description><subject>54</subject><subject>58</subject><subject>computers</subject><subject>CONVERGENCE</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Errors</subject><subject>EVALUATION</subject><subject>Exact sciences and technology</subject><subject>Handling</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Inverse</subject><subject>Inverse modeling</subject><subject>iTOUGH2</subject><subject>least squares</subject><subject>Materials handling</subject><subject>Mathematical models</subject><subject>Multiphase</subject><subject>MULTIPHASE FLOW</subject><subject>Residual analysis</subject><subject>Robust estimation</subject><subject>SIMULATION</subject><subject>Soils</subject><subject>Strategy</subject><subject>Surficial geology</subject><subject>TRANSPORT</subject><subject>uncertainty</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVIIZu0v6CHLoXSk93RhyX70ENZ0iaw0EOSs5iVx7tavNZW8gby7yPXS445DRqeeUfzMPaZQ8mB6x_70uGWQilg6vASoLlgC14bWZga5CVb5E5dSAB1xa5T2gOAEHW1YPVtjCEudzi0vR-2yzRGHGnrKS39sDyc-tEfd5gov54p5noILU3kR_ahwz7Rp3O9YU-_bx9Xd8X675_71a91gapWY9HSpkNT5W24gZaQlCTtSCvhWpFLBYaq2gi90R0XxoiGEBWvtSSlRdXIG_Z1zg1p9DY5P5LbuTAM5EbLASpuIEPfZ-gYw78TpdEefHLU9zhQOCXbZEkaVDORciZdDClF6uwx-gPGl5xlJ5d2b_-7tJNLy7nN5vLUt3M-Jod9F3FwPr2NCiUFr6TJ3JeZ6zBY3MbMPD3kIJ19a1nJaf_PmaDs7NlTnE6iwVHr43RRG_y7P3kFVmGSxg</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Finsterle, Stefan</creator><creator>Zhang, Yingqi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20110601</creationdate><title>Error handling strategies in multiphase inverse modeling</title><author>Finsterle, Stefan ; Zhang, Yingqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-debfa75022ab0deae43e6ce642cd2e64507e58726b6f127729eaa41863e462593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>54</topic><topic>58</topic><topic>computers</topic><topic>CONVERGENCE</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Errors</topic><topic>EVALUATION</topic><topic>Exact sciences and technology</topic><topic>Handling</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Inverse</topic><topic>Inverse modeling</topic><topic>iTOUGH2</topic><topic>least squares</topic><topic>Materials handling</topic><topic>Mathematical models</topic><topic>Multiphase</topic><topic>MULTIPHASE FLOW</topic><topic>Residual analysis</topic><topic>Robust estimation</topic><topic>SIMULATION</topic><topic>Soils</topic><topic>Strategy</topic><topic>Surficial geology</topic><topic>TRANSPORT</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finsterle, Stefan</creatorcontrib><creatorcontrib>Zhang, Yingqi</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finsterle, Stefan</au><au>Zhang, Yingqi</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error handling strategies in multiphase inverse modeling</atitle><jtitle>Computers &amp; geosciences</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>37</volume><issue>6</issue><spage>724</spage><epage>730</epage><pages>724-730</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2010.11.009</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-3004
ispartof Computers & geosciences, 2011-06, Vol.37 (6), p.724-730
issn 0098-3004
1873-7803
language eng
recordid cdi_osti_scitechconnect_1005170
source ScienceDirect Journals (5 years ago - present)
subjects 54
58
computers
CONVERGENCE
Earth sciences
Earth, ocean, space
Errors
EVALUATION
Exact sciences and technology
Handling
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Inverse
Inverse modeling
iTOUGH2
least squares
Materials handling
Mathematical models
Multiphase
MULTIPHASE FLOW
Residual analysis
Robust estimation
SIMULATION
Soils
Strategy
Surficial geology
TRANSPORT
uncertainty
title Error handling strategies in multiphase inverse modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20handling%20strategies%20in%20multiphase%20inverse%20modeling&rft.jtitle=Computers%20&%20geosciences&rft.au=Finsterle,%20Stefan&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-06-01&rft.volume=37&rft.issue=6&rft.spage=724&rft.epage=730&rft.pages=724-730&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2010.11.009&rft_dat=%3Cproquest_osti_%3E901660490%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901660490&rft_id=info:pmid/&rft_els_id=S0098300410003766&rfr_iscdi=true