Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington
We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted...
Gespeichert in:
Veröffentlicht in: | Water resources research 2010-10, Vol.46 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Water resources research |
container_volume | 46 |
creator | Slater, Lee D. Ntarlagiannis, Dimitrios Day-Lewis, Frederick D. Mwakanyamale, Kisa Versteeg, Roelof J. Ward, Andy Strickland, Christopher Johnson, Carole D. Lane Jr, John W. |
description | We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system. |
doi_str_mv | 10.1029/2010WR009110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1002180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>807305074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEEkvhxgNYXLg0MI6zTvZYLbSLVIHYUpabNbEn2ZSsvbUdteXN-nZ1WFQ4cRpr5vt_2_Nn2WsO7zgUi_cFcNisARacw5NsxhdlmVeLSjzNZgClyLlYVM-zFyFcAfByLqtZdn8ZiLmW0UA6-l7jwPoddr3tGFrDTB9StxkjGRZptyePcfTEAtkwMTuKW2cCi47pLXrUkXz_K81H36ImdoOpkXfejdb8PjO6TaDtiHnqxgHj5DJ6tP24YzHVsHc-Mowsbomt0LbOGyYA2IknPGYbDNskic6-zJ61OAR69aceZZenH78tV_n5l7NPy5PzHEtZQt42c1kXNdQkpQTRNEhEooI0JWG4LBCMbIVoiro2aWNGokFTNaLR0DbSiKPszcHXhdiroPtIequdtWlhigMUvIYEvT1Ae--uRwpR7fqgaRjQkhuDqqESMIeq_Gv3SF650dv0A1XL9E5ewgQdHyDtXQieWrX3KRZ_ly5UU9Tq36gTLg74TT_Q3X9ZtVkv17yQYlLlB1XKmG4fVeh_KlmJaq42n8_U6vvF14sfp6X6IB4A_3y9tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862801404</pqid></control><display><type>article</type><title>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</title><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Slater, Lee D. ; Ntarlagiannis, Dimitrios ; Day-Lewis, Frederick D. ; Mwakanyamale, Kisa ; Versteeg, Roelof J. ; Ward, Andy ; Strickland, Christopher ; Johnson, Carole D. ; Lane Jr, John W.</creator><creatorcontrib>Slater, Lee D. ; Ntarlagiannis, Dimitrios ; Day-Lewis, Frederick D. ; Mwakanyamale, Kisa ; Versteeg, Roelof J. ; Ward, Andy ; Strickland, Christopher ; Johnson, Carole D. ; Lane Jr, John W. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2010WR009110</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>300 area ; Aquifer systems ; AQUIFERS ; BOREHOLES ; CABLES ; COLUMBIA RIVER ; Contaminants ; Distributed Temperature Sensing ; ELECTRIC CONDUCTIVITY ; Electrical resistivity ; ENVIRONMENTAL SCIENCES ; FLUCTUATIONS ; FORECASTING ; Geoelectrical Imaging ; Geophysics ; Groundwater ; Hanford ; hydrogeophysics ; Hydrology ; Hyporheic Exchange ; induced polarization ; Lithology ; MONITORING ; PERMEABILITY ; POLARIZABILITY ; POLARIZATION ; RADAR ; resistivity ; RIVERS ; SAMPLING ; Scientific apparatus & instruments ; Sediments ; SOLUTES ; SPATIAL RESOLUTION ; Summer ; SURFACE AREA ; Surface water ; surface water-groundwater ; Surface-groundwater relations ; TRANSPORT ; URANIUM ; Uranium Transport ; Water springs ; water-ground exchange ; Winter</subject><ispartof>Water resources research, 2010-10, Vol.46 (10), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</citedby><cites>FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010WR009110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010WR009110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,11513,27923,27924,45573,45574,46467,46891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1002180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Slater, Lee D.</creatorcontrib><creatorcontrib>Ntarlagiannis, Dimitrios</creatorcontrib><creatorcontrib>Day-Lewis, Frederick D.</creatorcontrib><creatorcontrib>Mwakanyamale, Kisa</creatorcontrib><creatorcontrib>Versteeg, Roelof J.</creatorcontrib><creatorcontrib>Ward, Andy</creatorcontrib><creatorcontrib>Strickland, Christopher</creatorcontrib><creatorcontrib>Johnson, Carole D.</creatorcontrib><creatorcontrib>Lane Jr, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.</description><subject>300 area</subject><subject>Aquifer systems</subject><subject>AQUIFERS</subject><subject>BOREHOLES</subject><subject>CABLES</subject><subject>COLUMBIA RIVER</subject><subject>Contaminants</subject><subject>Distributed Temperature Sensing</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electrical resistivity</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>FLUCTUATIONS</subject><subject>FORECASTING</subject><subject>Geoelectrical Imaging</subject><subject>Geophysics</subject><subject>Groundwater</subject><subject>Hanford</subject><subject>hydrogeophysics</subject><subject>Hydrology</subject><subject>Hyporheic Exchange</subject><subject>induced polarization</subject><subject>Lithology</subject><subject>MONITORING</subject><subject>PERMEABILITY</subject><subject>POLARIZABILITY</subject><subject>POLARIZATION</subject><subject>RADAR</subject><subject>resistivity</subject><subject>RIVERS</subject><subject>SAMPLING</subject><subject>Scientific apparatus & instruments</subject><subject>Sediments</subject><subject>SOLUTES</subject><subject>SPATIAL RESOLUTION</subject><subject>Summer</subject><subject>SURFACE AREA</subject><subject>Surface water</subject><subject>surface water-groundwater</subject><subject>Surface-groundwater relations</subject><subject>TRANSPORT</subject><subject>URANIUM</subject><subject>Uranium Transport</subject><subject>Water springs</subject><subject>water-ground exchange</subject><subject>Winter</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcFu1DAQhiMEEkvhxgNYXLg0MI6zTvZYLbSLVIHYUpabNbEn2ZSsvbUdteXN-nZ1WFQ4cRpr5vt_2_Nn2WsO7zgUi_cFcNisARacw5NsxhdlmVeLSjzNZgClyLlYVM-zFyFcAfByLqtZdn8ZiLmW0UA6-l7jwPoddr3tGFrDTB9StxkjGRZptyePcfTEAtkwMTuKW2cCi47pLXrUkXz_K81H36ImdoOpkXfejdb8PjO6TaDtiHnqxgHj5DJ6tP24YzHVsHc-Mowsbomt0LbOGyYA2IknPGYbDNskic6-zJ61OAR69aceZZenH78tV_n5l7NPy5PzHEtZQt42c1kXNdQkpQTRNEhEooI0JWG4LBCMbIVoiro2aWNGokFTNaLR0DbSiKPszcHXhdiroPtIequdtWlhigMUvIYEvT1Ae--uRwpR7fqgaRjQkhuDqqESMIeq_Gv3SF650dv0A1XL9E5ewgQdHyDtXQieWrX3KRZ_ly5UU9Tq36gTLg74TT_Q3X9ZtVkv17yQYlLlB1XKmG4fVeh_KlmJaq42n8_U6vvF14sfp6X6IB4A_3y9tw</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Slater, Lee D.</creator><creator>Ntarlagiannis, Dimitrios</creator><creator>Day-Lewis, Frederick D.</creator><creator>Mwakanyamale, Kisa</creator><creator>Versteeg, Roelof J.</creator><creator>Ward, Andy</creator><creator>Strickland, Christopher</creator><creator>Johnson, Carole D.</creator><creator>Lane Jr, John W.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QO</scope><scope>7U7</scope><scope>OTOTI</scope></search><sort><creationdate>201010</creationdate><title>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</title><author>Slater, Lee D. ; Ntarlagiannis, Dimitrios ; Day-Lewis, Frederick D. ; Mwakanyamale, Kisa ; Versteeg, Roelof J. ; Ward, Andy ; Strickland, Christopher ; Johnson, Carole D. ; Lane Jr, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>300 area</topic><topic>Aquifer systems</topic><topic>AQUIFERS</topic><topic>BOREHOLES</topic><topic>CABLES</topic><topic>COLUMBIA RIVER</topic><topic>Contaminants</topic><topic>Distributed Temperature Sensing</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electrical resistivity</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>FLUCTUATIONS</topic><topic>FORECASTING</topic><topic>Geoelectrical Imaging</topic><topic>Geophysics</topic><topic>Groundwater</topic><topic>Hanford</topic><topic>hydrogeophysics</topic><topic>Hydrology</topic><topic>Hyporheic Exchange</topic><topic>induced polarization</topic><topic>Lithology</topic><topic>MONITORING</topic><topic>PERMEABILITY</topic><topic>POLARIZABILITY</topic><topic>POLARIZATION</topic><topic>RADAR</topic><topic>resistivity</topic><topic>RIVERS</topic><topic>SAMPLING</topic><topic>Scientific apparatus & instruments</topic><topic>Sediments</topic><topic>SOLUTES</topic><topic>SPATIAL RESOLUTION</topic><topic>Summer</topic><topic>SURFACE AREA</topic><topic>Surface water</topic><topic>surface water-groundwater</topic><topic>Surface-groundwater relations</topic><topic>TRANSPORT</topic><topic>URANIUM</topic><topic>Uranium Transport</topic><topic>Water springs</topic><topic>water-ground exchange</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slater, Lee D.</creatorcontrib><creatorcontrib>Ntarlagiannis, Dimitrios</creatorcontrib><creatorcontrib>Day-Lewis, Frederick D.</creatorcontrib><creatorcontrib>Mwakanyamale, Kisa</creatorcontrib><creatorcontrib>Versteeg, Roelof J.</creatorcontrib><creatorcontrib>Ward, Andy</creatorcontrib><creatorcontrib>Strickland, Christopher</creatorcontrib><creatorcontrib>Johnson, Carole D.</creatorcontrib><creatorcontrib>Lane Jr, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slater, Lee D.</au><au>Ntarlagiannis, Dimitrios</au><au>Day-Lewis, Frederick D.</au><au>Mwakanyamale, Kisa</au><au>Versteeg, Roelof J.</au><au>Ward, Andy</au><au>Strickland, Christopher</au><au>Johnson, Carole D.</au><au>Lane Jr, John W.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2010-10</date><risdate>2010</risdate><volume>46</volume><issue>10</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010WR009110</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2010-10, Vol.46 (10), p.n/a |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_osti_scitechconnect_1002180 |
source | Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | 300 area Aquifer systems AQUIFERS BOREHOLES CABLES COLUMBIA RIVER Contaminants Distributed Temperature Sensing ELECTRIC CONDUCTIVITY Electrical resistivity ENVIRONMENTAL SCIENCES FLUCTUATIONS FORECASTING Geoelectrical Imaging Geophysics Groundwater Hanford hydrogeophysics Hydrology Hyporheic Exchange induced polarization Lithology MONITORING PERMEABILITY POLARIZABILITY POLARIZATION RADAR resistivity RIVERS SAMPLING Scientific apparatus & instruments Sediments SOLUTES SPATIAL RESOLUTION Summer SURFACE AREA Surface water surface water-groundwater Surface-groundwater relations TRANSPORT URANIUM Uranium Transport Water springs water-ground exchange Winter |
title | Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A27%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20electrical%20imaging%20and%20distributed%20temperature%20sensing%20methods%20to%20characterize%20surface%20water-groundwater%20exchange%20regulating%20uranium%20transport%20at%20the%20Hanford%20300%20Area,%20Washington&rft.jtitle=Water%20resources%20research&rft.au=Slater,%20Lee%20D.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2010-10&rft.volume=46&rft.issue=10&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2010WR009110&rft_dat=%3Cproquest_osti_%3E807305074%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862801404&rft_id=info:pmid/&rfr_iscdi=true |