Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2010-10, Vol.46 (10), p.n/a
Hauptverfasser: Slater, Lee D., Ntarlagiannis, Dimitrios, Day-Lewis, Frederick D., Mwakanyamale, Kisa, Versteeg, Roelof J., Ward, Andy, Strickland, Christopher, Johnson, Carole D., Lane Jr, John W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Water resources research
container_volume 46
creator Slater, Lee D.
Ntarlagiannis, Dimitrios
Day-Lewis, Frederick D.
Mwakanyamale, Kisa
Versteeg, Roelof J.
Ward, Andy
Strickland, Christopher
Johnson, Carole D.
Lane Jr, John W.
description We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.
doi_str_mv 10.1029/2010WR009110
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1002180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>807305074</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEEkvhxgNYXLg0MI6zTvZYLbSLVIHYUpabNbEn2ZSsvbUdteXN-nZ1WFQ4cRpr5vt_2_Nn2WsO7zgUi_cFcNisARacw5NsxhdlmVeLSjzNZgClyLlYVM-zFyFcAfByLqtZdn8ZiLmW0UA6-l7jwPoddr3tGFrDTB9StxkjGRZptyePcfTEAtkwMTuKW2cCi47pLXrUkXz_K81H36ImdoOpkXfejdb8PjO6TaDtiHnqxgHj5DJ6tP24YzHVsHc-Mowsbomt0LbOGyYA2IknPGYbDNskic6-zJ61OAR69aceZZenH78tV_n5l7NPy5PzHEtZQt42c1kXNdQkpQTRNEhEooI0JWG4LBCMbIVoiro2aWNGokFTNaLR0DbSiKPszcHXhdiroPtIequdtWlhigMUvIYEvT1Ae--uRwpR7fqgaRjQkhuDqqESMIeq_Gv3SF650dv0A1XL9E5ewgQdHyDtXQieWrX3KRZ_ly5UU9Tq36gTLg74TT_Q3X9ZtVkv17yQYlLlB1XKmG4fVeh_KlmJaq42n8_U6vvF14sfp6X6IB4A_3y9tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862801404</pqid></control><display><type>article</type><title>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</title><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Slater, Lee D. ; Ntarlagiannis, Dimitrios ; Day-Lewis, Frederick D. ; Mwakanyamale, Kisa ; Versteeg, Roelof J. ; Ward, Andy ; Strickland, Christopher ; Johnson, Carole D. ; Lane Jr, John W.</creator><creatorcontrib>Slater, Lee D. ; Ntarlagiannis, Dimitrios ; Day-Lewis, Frederick D. ; Mwakanyamale, Kisa ; Versteeg, Roelof J. ; Ward, Andy ; Strickland, Christopher ; Johnson, Carole D. ; Lane Jr, John W. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2010WR009110</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>300 area ; Aquifer systems ; AQUIFERS ; BOREHOLES ; CABLES ; COLUMBIA RIVER ; Contaminants ; Distributed Temperature Sensing ; ELECTRIC CONDUCTIVITY ; Electrical resistivity ; ENVIRONMENTAL SCIENCES ; FLUCTUATIONS ; FORECASTING ; Geoelectrical Imaging ; Geophysics ; Groundwater ; Hanford ; hydrogeophysics ; Hydrology ; Hyporheic Exchange ; induced polarization ; Lithology ; MONITORING ; PERMEABILITY ; POLARIZABILITY ; POLARIZATION ; RADAR ; resistivity ; RIVERS ; SAMPLING ; Scientific apparatus &amp; instruments ; Sediments ; SOLUTES ; SPATIAL RESOLUTION ; Summer ; SURFACE AREA ; Surface water ; surface water-groundwater ; Surface-groundwater relations ; TRANSPORT ; URANIUM ; Uranium Transport ; Water springs ; water-ground exchange ; Winter</subject><ispartof>Water resources research, 2010-10, Vol.46 (10), p.n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</citedby><cites>FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010WR009110$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010WR009110$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,11513,27923,27924,45573,45574,46467,46891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1002180$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Slater, Lee D.</creatorcontrib><creatorcontrib>Ntarlagiannis, Dimitrios</creatorcontrib><creatorcontrib>Day-Lewis, Frederick D.</creatorcontrib><creatorcontrib>Mwakanyamale, Kisa</creatorcontrib><creatorcontrib>Versteeg, Roelof J.</creatorcontrib><creatorcontrib>Ward, Andy</creatorcontrib><creatorcontrib>Strickland, Christopher</creatorcontrib><creatorcontrib>Johnson, Carole D.</creatorcontrib><creatorcontrib>Lane Jr, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.</description><subject>300 area</subject><subject>Aquifer systems</subject><subject>AQUIFERS</subject><subject>BOREHOLES</subject><subject>CABLES</subject><subject>COLUMBIA RIVER</subject><subject>Contaminants</subject><subject>Distributed Temperature Sensing</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electrical resistivity</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>FLUCTUATIONS</subject><subject>FORECASTING</subject><subject>Geoelectrical Imaging</subject><subject>Geophysics</subject><subject>Groundwater</subject><subject>Hanford</subject><subject>hydrogeophysics</subject><subject>Hydrology</subject><subject>Hyporheic Exchange</subject><subject>induced polarization</subject><subject>Lithology</subject><subject>MONITORING</subject><subject>PERMEABILITY</subject><subject>POLARIZABILITY</subject><subject>POLARIZATION</subject><subject>RADAR</subject><subject>resistivity</subject><subject>RIVERS</subject><subject>SAMPLING</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Sediments</subject><subject>SOLUTES</subject><subject>SPATIAL RESOLUTION</subject><subject>Summer</subject><subject>SURFACE AREA</subject><subject>Surface water</subject><subject>surface water-groundwater</subject><subject>Surface-groundwater relations</subject><subject>TRANSPORT</subject><subject>URANIUM</subject><subject>Uranium Transport</subject><subject>Water springs</subject><subject>water-ground exchange</subject><subject>Winter</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kcFu1DAQhiMEEkvhxgNYXLg0MI6zTvZYLbSLVIHYUpabNbEn2ZSsvbUdteXN-nZ1WFQ4cRpr5vt_2_Nn2WsO7zgUi_cFcNisARacw5NsxhdlmVeLSjzNZgClyLlYVM-zFyFcAfByLqtZdn8ZiLmW0UA6-l7jwPoddr3tGFrDTB9StxkjGRZptyePcfTEAtkwMTuKW2cCi47pLXrUkXz_K81H36ImdoOpkXfejdb8PjO6TaDtiHnqxgHj5DJ6tP24YzHVsHc-Mowsbomt0LbOGyYA2IknPGYbDNskic6-zJ61OAR69aceZZenH78tV_n5l7NPy5PzHEtZQt42c1kXNdQkpQTRNEhEooI0JWG4LBCMbIVoiro2aWNGokFTNaLR0DbSiKPszcHXhdiroPtIequdtWlhigMUvIYEvT1Ae--uRwpR7fqgaRjQkhuDqqESMIeq_Gv3SF650dv0A1XL9E5ewgQdHyDtXQieWrX3KRZ_ly5UU9Tq36gTLg74TT_Q3X9ZtVkv17yQYlLlB1XKmG4fVeh_KlmJaq42n8_U6vvF14sfp6X6IB4A_3y9tw</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Slater, Lee D.</creator><creator>Ntarlagiannis, Dimitrios</creator><creator>Day-Lewis, Frederick D.</creator><creator>Mwakanyamale, Kisa</creator><creator>Versteeg, Roelof J.</creator><creator>Ward, Andy</creator><creator>Strickland, Christopher</creator><creator>Johnson, Carole D.</creator><creator>Lane Jr, John W.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M7N</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7QO</scope><scope>7U7</scope><scope>OTOTI</scope></search><sort><creationdate>201010</creationdate><title>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</title><author>Slater, Lee D. ; Ntarlagiannis, Dimitrios ; Day-Lewis, Frederick D. ; Mwakanyamale, Kisa ; Versteeg, Roelof J. ; Ward, Andy ; Strickland, Christopher ; Johnson, Carole D. ; Lane Jr, John W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4640-fb5682808e66603bbaeee370a46e3d162a0d6f33b288d194d6adad7b3bc0fb6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>300 area</topic><topic>Aquifer systems</topic><topic>AQUIFERS</topic><topic>BOREHOLES</topic><topic>CABLES</topic><topic>COLUMBIA RIVER</topic><topic>Contaminants</topic><topic>Distributed Temperature Sensing</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electrical resistivity</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>FLUCTUATIONS</topic><topic>FORECASTING</topic><topic>Geoelectrical Imaging</topic><topic>Geophysics</topic><topic>Groundwater</topic><topic>Hanford</topic><topic>hydrogeophysics</topic><topic>Hydrology</topic><topic>Hyporheic Exchange</topic><topic>induced polarization</topic><topic>Lithology</topic><topic>MONITORING</topic><topic>PERMEABILITY</topic><topic>POLARIZABILITY</topic><topic>POLARIZATION</topic><topic>RADAR</topic><topic>resistivity</topic><topic>RIVERS</topic><topic>SAMPLING</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Sediments</topic><topic>SOLUTES</topic><topic>SPATIAL RESOLUTION</topic><topic>Summer</topic><topic>SURFACE AREA</topic><topic>Surface water</topic><topic>surface water-groundwater</topic><topic>Surface-groundwater relations</topic><topic>TRANSPORT</topic><topic>URANIUM</topic><topic>Uranium Transport</topic><topic>Water springs</topic><topic>water-ground exchange</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slater, Lee D.</creatorcontrib><creatorcontrib>Ntarlagiannis, Dimitrios</creatorcontrib><creatorcontrib>Day-Lewis, Frederick D.</creatorcontrib><creatorcontrib>Mwakanyamale, Kisa</creatorcontrib><creatorcontrib>Versteeg, Roelof J.</creatorcontrib><creatorcontrib>Ward, Andy</creatorcontrib><creatorcontrib>Strickland, Christopher</creatorcontrib><creatorcontrib>Johnson, Carole D.</creatorcontrib><creatorcontrib>Lane Jr, John W.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slater, Lee D.</au><au>Ntarlagiannis, Dimitrios</au><au>Day-Lewis, Frederick D.</au><au>Mwakanyamale, Kisa</au><au>Versteeg, Roelof J.</au><au>Ward, Andy</au><au>Strickland, Christopher</au><au>Johnson, Carole D.</au><au>Lane Jr, John W.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2010-10</date><risdate>2010</risdate><volume>46</volume><issue>10</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010WR009110</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2010-10, Vol.46 (10), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_osti_scitechconnect_1002180
source Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects 300 area
Aquifer systems
AQUIFERS
BOREHOLES
CABLES
COLUMBIA RIVER
Contaminants
Distributed Temperature Sensing
ELECTRIC CONDUCTIVITY
Electrical resistivity
ENVIRONMENTAL SCIENCES
FLUCTUATIONS
FORECASTING
Geoelectrical Imaging
Geophysics
Groundwater
Hanford
hydrogeophysics
Hydrology
Hyporheic Exchange
induced polarization
Lithology
MONITORING
PERMEABILITY
POLARIZABILITY
POLARIZATION
RADAR
resistivity
RIVERS
SAMPLING
Scientific apparatus & instruments
Sediments
SOLUTES
SPATIAL RESOLUTION
Summer
SURFACE AREA
Surface water
surface water-groundwater
Surface-groundwater relations
TRANSPORT
URANIUM
Uranium Transport
Water springs
water-ground exchange
Winter
title Use of electrical imaging and distributed temperature sensing methods to characterize surface water-groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A27%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20electrical%20imaging%20and%20distributed%20temperature%20sensing%20methods%20to%20characterize%20surface%20water-groundwater%20exchange%20regulating%20uranium%20transport%20at%20the%20Hanford%20300%20Area,%20Washington&rft.jtitle=Water%20resources%20research&rft.au=Slater,%20Lee%20D.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2010-10&rft.volume=46&rft.issue=10&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2010WR009110&rft_dat=%3Cproquest_osti_%3E807305074%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862801404&rft_id=info:pmid/&rfr_iscdi=true