Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects
Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that u...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2010-04, Vol.328 (5975), p.224-228 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 5975 |
container_start_page | 224 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 328 |
creator | Lei, Y Mehmood, F Lee, S Greeley, J Lee, B Seifert, S Winans, R.E Elam, J.W Meyer, R.J Redfern, P.C Teschner, D Schlögl, R Pellin, M.J Curtiss, L.A Vajda, S |
description | Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag₃ clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation. |
doi_str_mv | 10.1126/science.1185200 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1001484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40544526</jstor_id><sourcerecordid>40544526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-edc2c490a25ab246770ca3e695458a1278006d1c4a53f8e3e6b4b7b83f5848573</originalsourceid><addsrcrecordid>eNqFkc9rFDEcxYModq2ePamDUDyN_ebnZI6ltlooKKwFbyGTyWiW2WSbZBbXv96UGbdHTyG8z3vfb_IQeo3hI8ZEnCfjrDe2XCQnAE_QCkPL65YAfYpWAFTUEhp-gl6ktAEoWkufo5MiN1JivkI_bryJVifbV2s37m2sLkx2e5cP1RBi9clFa3L1LYbdYbTeVle78Nv1Orvgq73T1XrqvPZha3Oxrt2fQgxDsaSX6Nmgx2RfLecpuru--n75pb79-vnm8uK2NrzFuba9IYa1oAnXHWGiacBoakXLGZcak0YCiB4bpjkdpC1Kx7qmk3Tgkkne0FP0fs4NKTtV_iNb88sE78sSCgNgJlmBPszQLob7yaasti4ZO47a2zAl1TAqgGPB_09SKkWZSx4HH8lNmKIvb1UElzjCJBTofIZMDClFO6hddFsdD2U19dCgWhpUS4PF8XaJnbqt7Y_8v8oKcLYAOhk9DlF749IjRwSjFIvCvZm5TcohHnUGnDFOHvR3sz7ooPTPWDLu1gQwBSwJZyXhL4R4tag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213602480</pqid></control><display><type>article</type><title>Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Lei, Y ; Mehmood, F ; Lee, S ; Greeley, J ; Lee, B ; Seifert, S ; Winans, R.E ; Elam, J.W ; Meyer, R.J ; Redfern, P.C ; Teschner, D ; Schlögl, R ; Pellin, M.J ; Curtiss, L.A ; Vajda, S</creator><creatorcontrib>Lei, Y ; Mehmood, F ; Lee, S ; Greeley, J ; Lee, B ; Seifert, S ; Winans, R.E ; Elam, J.W ; Meyer, R.J ; Redfern, P.C ; Teschner, D ; Schlögl, R ; Pellin, M.J ; Curtiss, L.A ; Vajda, S ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag₃ clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1185200</identifier><identifier>PMID: 20378815</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Atoms ; Carbon dioxide ; Catalysis ; CATALYSTS ; CATALYTIC EFFECTS ; Chemical compounds ; Chemical reactions ; Chemistry ; Colloidal state and disperse state ; ELECTRONIC STRUCTURE ; Environmental Molecular Sciences Laboratory ; Epoxidation ; EPOXIDES ; Exact sciences and technology ; General and physical chemistry ; Hydrogen ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Nanoparticles ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOSTRUCTURES ; OXIDATION ; Oxides ; Oxygen ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; PROPYLENE ; SILVER ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Trimers</subject><ispartof>Science (American Association for the Advancement of Science), 2010-04, Vol.328 (5975), p.224-228</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-edc2c490a25ab246770ca3e695458a1278006d1c4a53f8e3e6b4b7b83f5848573</citedby><cites>FETCH-LOGICAL-c591t-edc2c490a25ab246770ca3e695458a1278006d1c4a53f8e3e6b4b7b83f5848573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40544526$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40544526$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,882,2871,2872,27905,27906,57998,58231</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22643316$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20378815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1001484$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Y</creatorcontrib><creatorcontrib>Mehmood, F</creatorcontrib><creatorcontrib>Lee, S</creatorcontrib><creatorcontrib>Greeley, J</creatorcontrib><creatorcontrib>Lee, B</creatorcontrib><creatorcontrib>Seifert, S</creatorcontrib><creatorcontrib>Winans, R.E</creatorcontrib><creatorcontrib>Elam, J.W</creatorcontrib><creatorcontrib>Meyer, R.J</creatorcontrib><creatorcontrib>Redfern, P.C</creatorcontrib><creatorcontrib>Teschner, D</creatorcontrib><creatorcontrib>Schlögl, R</creatorcontrib><creatorcontrib>Pellin, M.J</creatorcontrib><creatorcontrib>Curtiss, L.A</creatorcontrib><creatorcontrib>Vajda, S</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag₃ clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.</description><subject>Atoms</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>CATALYSTS</subject><subject>CATALYTIC EFFECTS</subject><subject>Chemical compounds</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>ELECTRONIC STRUCTURE</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Epoxidation</subject><subject>EPOXIDES</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Nanoparticles</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOSTRUCTURES</subject><subject>OXIDATION</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>PROPYLENE</subject><subject>SILVER</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Trimers</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEcxYModq2ePamDUDyN_ebnZI6ltlooKKwFbyGTyWiW2WSbZBbXv96UGbdHTyG8z3vfb_IQeo3hI8ZEnCfjrDe2XCQnAE_QCkPL65YAfYpWAFTUEhp-gl6ktAEoWkufo5MiN1JivkI_bryJVifbV2s37m2sLkx2e5cP1RBi9clFa3L1LYbdYbTeVle78Nv1Orvgq73T1XrqvPZha3Oxrt2fQgxDsaSX6Nmgx2RfLecpuru--n75pb79-vnm8uK2NrzFuba9IYa1oAnXHWGiacBoakXLGZcak0YCiB4bpjkdpC1Kx7qmk3Tgkkne0FP0fs4NKTtV_iNb88sE78sSCgNgJlmBPszQLob7yaasti4ZO47a2zAl1TAqgGPB_09SKkWZSx4HH8lNmKIvb1UElzjCJBTofIZMDClFO6hddFsdD2U19dCgWhpUS4PF8XaJnbqt7Y_8v8oKcLYAOhk9DlF749IjRwSjFIvCvZm5TcohHnUGnDFOHvR3sz7ooPTPWDLu1gQwBSwJZyXhL4R4tag</recordid><startdate>20100409</startdate><enddate>20100409</enddate><creator>Lei, Y</creator><creator>Mehmood, F</creator><creator>Lee, S</creator><creator>Greeley, J</creator><creator>Lee, B</creator><creator>Seifert, S</creator><creator>Winans, R.E</creator><creator>Elam, J.W</creator><creator>Meyer, R.J</creator><creator>Redfern, P.C</creator><creator>Teschner, D</creator><creator>Schlögl, R</creator><creator>Pellin, M.J</creator><creator>Curtiss, L.A</creator><creator>Vajda, S</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100409</creationdate><title>Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects</title><author>Lei, Y ; Mehmood, F ; Lee, S ; Greeley, J ; Lee, B ; Seifert, S ; Winans, R.E ; Elam, J.W ; Meyer, R.J ; Redfern, P.C ; Teschner, D ; Schlögl, R ; Pellin, M.J ; Curtiss, L.A ; Vajda, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-edc2c490a25ab246770ca3e695458a1278006d1c4a53f8e3e6b4b7b83f5848573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atoms</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>CATALYSTS</topic><topic>CATALYTIC EFFECTS</topic><topic>Chemical compounds</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>ELECTRONIC STRUCTURE</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Epoxidation</topic><topic>EPOXIDES</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Nanoparticles</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOSTRUCTURES</topic><topic>OXIDATION</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>PROPYLENE</topic><topic>SILVER</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Y</creatorcontrib><creatorcontrib>Mehmood, F</creatorcontrib><creatorcontrib>Lee, S</creatorcontrib><creatorcontrib>Greeley, J</creatorcontrib><creatorcontrib>Lee, B</creatorcontrib><creatorcontrib>Seifert, S</creatorcontrib><creatorcontrib>Winans, R.E</creatorcontrib><creatorcontrib>Elam, J.W</creatorcontrib><creatorcontrib>Meyer, R.J</creatorcontrib><creatorcontrib>Redfern, P.C</creatorcontrib><creatorcontrib>Teschner, D</creatorcontrib><creatorcontrib>Schlögl, R</creatorcontrib><creatorcontrib>Pellin, M.J</creatorcontrib><creatorcontrib>Curtiss, L.A</creatorcontrib><creatorcontrib>Vajda, S</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Y</au><au>Mehmood, F</au><au>Lee, S</au><au>Greeley, J</au><au>Lee, B</au><au>Seifert, S</au><au>Winans, R.E</au><au>Elam, J.W</au><au>Meyer, R.J</au><au>Redfern, P.C</au><au>Teschner, D</au><au>Schlögl, R</au><au>Pellin, M.J</au><au>Curtiss, L.A</au><au>Vajda, S</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-04-09</date><risdate>2010</risdate><volume>328</volume><issue>5975</issue><spage>224</spage><epage>228</epage><pages>224-228</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag₃ clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20378815</pmid><doi>10.1126/science.1185200</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-04, Vol.328 (5975), p.224-228 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1001484 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Atoms Carbon dioxide Catalysis CATALYSTS CATALYTIC EFFECTS Chemical compounds Chemical reactions Chemistry Colloidal state and disperse state ELECTRONIC STRUCTURE Environmental Molecular Sciences Laboratory Epoxidation EPOXIDES Exact sciences and technology General and physical chemistry Hydrogen INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Nanoparticles NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES OXIDATION Oxides Oxygen Physical and chemical studies. Granulometry. Electrokinetic phenomena PROPYLENE SILVER Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry Trimers |
title | Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20Silver%20Activity%20for%20Direct%20Propylene%20Epoxidation%20via%20Subnanometer%20Size%20Effects&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lei,%20Y&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2010-04-09&rft.volume=328&rft.issue=5975&rft.spage=224&rft.epage=228&rft.pages=224-228&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1185200&rft_dat=%3Cjstor_osti_%3E40544526%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213602480&rft_id=info:pmid/20378815&rft_jstor_id=40544526&rfr_iscdi=true |