Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set
In this paper, an extension of the S22 data set of Jurecka et al. ( Jurečka P. ; Šponer J. ; Černý J. ; Hobza P. Phys. Chem. Chem. Phys. 2006, 8, 1985. ), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2010-08, Vol.6 (8), p.2365-2376 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2376 |
---|---|
container_issue | 8 |
container_start_page | 2365 |
container_title | Journal of chemical theory and computation |
container_volume | 6 |
creator | Gráfová, Lucie Pitoňák, Michal Řezáč, Jan Hobza, Pavel |
description | In this paper, an extension of the S22 data set of Jurecka et al. ( Jurečka P. ; Šponer J. ; Černý J. ; Hobza P. Phys. Chem. Chem. Phys. 2006, 8, 1985. ), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani T. ; Hohenstein E. G. ; Sherrill C. D. J. Chem. Phys. 2008, 128, 124111 ), MP2C (dispersion-corrected MP2, according to Hesselmann A. J. Chem. Phys. 2008, 128, 144112 ), and MP2.5 (scaled MP3, according to Pitoňák M. ; Neogrády P. ; Černý J. ; Grimme S. ; Hobza P. ChemPhysChem 2009, 10, 282. ). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation. |
doi_str_mv | 10.1021/ct1002253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1001468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738483454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-feae49ddc126ecc0eaa946205361db3b010eb3b56bcbb383b562fb2a66fc99383</originalsourceid><addsrcrecordid>eNptkU9v1DAQxS0EoqVw4AsgCwkJDgv-F5Mc0XZbKhU4LBXHaGJPuqmy9mJPKvar8GnrVcqeOM3o6efn0XuMvZbioxRKfnIkhVCq0k_YqaxMs2issk-Pu6xP2Iuc74TQ2ij9nJ0oa6U2jTplf5dxu4MENNwjX9Pk9zz2fI0jOkLPf0GRL6bgaIiBQ_D8HEMeaH8UYeTfkDbRZ97HxL_H4OI9jBiIXwXCBPPTVcB0u-dLGN00wkHK_CYP4ZbTBvnqD2Hw5b-1UvwcCMoF9JI962HM-OpxnrGbi9XP5dfF9Y_Lq-WX6wUYUdOiR0DTeO-ksuicQIDGWCUqbaXvdCekwDIq27mu0_VhU32nwNreNU0Rztjb2TdmGtrsBkK3cTGEEkFbgpXGHqD3M7RL8feEmdrtkB2OIwSMU27lZ12bWpvKFPTDjLoUc07Yt7s0bCHti1l76Ks99lXYN4-2U7dFfyT_FVSAdzMALrd3cUol8Pwfowch751p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738483454</pqid></control><display><type>article</type><title>Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set</title><source>ACS Publications</source><creator>Gráfová, Lucie ; Pitoňák, Michal ; Řezáč, Jan ; Hobza, Pavel</creator><creatorcontrib>Gráfová, Lucie ; Pitoňák, Michal ; Řezáč, Jan ; Hobza, Pavel ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>In this paper, an extension of the S22 data set of Jurecka et al. ( Jurečka P. ; Šponer J. ; Černý J. ; Hobza P. Phys. Chem. Chem. Phys. 2006, 8, 1985. ), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani T. ; Hohenstein E. G. ; Sherrill C. D. J. Chem. Phys. 2008, 128, 124111 ), MP2C (dispersion-corrected MP2, according to Hesselmann A. J. Chem. Phys. 2008, 128, 144112 ), and MP2.5 (scaled MP3, according to Pitoňák M. ; Neogrády P. ; Černý J. ; Grimme S. ; Hobza P. ChemPhysChem 2009, 10, 282. ). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/ct1002253</identifier><identifier>PMID: 26613492</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>COMPARATIVE EVALUATIONS ; COMPLEXES ; DENSITY FUNCTIONAL METHOD ; Environmental Molecular Sciences Laboratory ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; MATHEMATICAL METHODS AND COMPUTING ; MOLECULES ; Quantum Electronic Structure ; WAVE FUNCTIONS</subject><ispartof>Journal of chemical theory and computation, 2010-08, Vol.6 (8), p.2365-2376</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-feae49ddc126ecc0eaa946205361db3b010eb3b56bcbb383b562fb2a66fc99383</citedby><cites>FETCH-LOGICAL-a408t-feae49ddc126ecc0eaa946205361db3b010eb3b56bcbb383b562fb2a66fc99383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ct1002253$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ct1002253$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26613492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1001468$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gráfová, Lucie</creatorcontrib><creatorcontrib>Pitoňák, Michal</creatorcontrib><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>In this paper, an extension of the S22 data set of Jurecka et al. ( Jurečka P. ; Šponer J. ; Černý J. ; Hobza P. Phys. Chem. Chem. Phys. 2006, 8, 1985. ), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani T. ; Hohenstein E. G. ; Sherrill C. D. J. Chem. Phys. 2008, 128, 124111 ), MP2C (dispersion-corrected MP2, according to Hesselmann A. J. Chem. Phys. 2008, 128, 144112 ), and MP2.5 (scaled MP3, according to Pitoňák M. ; Neogrády P. ; Černý J. ; Grimme S. ; Hobza P. ChemPhysChem 2009, 10, 282. ). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation.</description><subject>COMPARATIVE EVALUATIONS</subject><subject>COMPLEXES</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MOLECULES</subject><subject>Quantum Electronic Structure</subject><subject>WAVE FUNCTIONS</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkU9v1DAQxS0EoqVw4AsgCwkJDgv-F5Mc0XZbKhU4LBXHaGJPuqmy9mJPKvar8GnrVcqeOM3o6efn0XuMvZbioxRKfnIkhVCq0k_YqaxMs2issk-Pu6xP2Iuc74TQ2ij9nJ0oa6U2jTplf5dxu4MENNwjX9Pk9zz2fI0jOkLPf0GRL6bgaIiBQ_D8HEMeaH8UYeTfkDbRZ97HxL_H4OI9jBiIXwXCBPPTVcB0u-dLGN00wkHK_CYP4ZbTBvnqD2Hw5b-1UvwcCMoF9JI962HM-OpxnrGbi9XP5dfF9Y_Lq-WX6wUYUdOiR0DTeO-ksuicQIDGWCUqbaXvdCekwDIq27mu0_VhU32nwNreNU0Rztjb2TdmGtrsBkK3cTGEEkFbgpXGHqD3M7RL8feEmdrtkB2OIwSMU27lZ12bWpvKFPTDjLoUc07Yt7s0bCHti1l76Ks99lXYN4-2U7dFfyT_FVSAdzMALrd3cUol8Pwfowch751p</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>Gráfová, Lucie</creator><creator>Pitoňák, Michal</creator><creator>Řezáč, Jan</creator><creator>Hobza, Pavel</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20100810</creationdate><title>Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set</title><author>Gráfová, Lucie ; Pitoňák, Michal ; Řezáč, Jan ; Hobza, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-feae49ddc126ecc0eaa946205361db3b010eb3b56bcbb383b562fb2a66fc99383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>COMPARATIVE EVALUATIONS</topic><topic>COMPLEXES</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MOLECULES</topic><topic>Quantum Electronic Structure</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gráfová, Lucie</creatorcontrib><creatorcontrib>Pitoňák, Michal</creatorcontrib><creatorcontrib>Řezáč, Jan</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gráfová, Lucie</au><au>Pitoňák, Michal</au><au>Řezáč, Jan</au><au>Hobza, Pavel</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>6</volume><issue>8</issue><spage>2365</spage><epage>2376</epage><pages>2365-2376</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>In this paper, an extension of the S22 data set of Jurecka et al. ( Jurečka P. ; Šponer J. ; Černý J. ; Hobza P. Phys. Chem. Chem. Phys. 2006, 8, 1985. ), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani T. ; Hohenstein E. G. ; Sherrill C. D. J. Chem. Phys. 2008, 128, 124111 ), MP2C (dispersion-corrected MP2, according to Hesselmann A. J. Chem. Phys. 2008, 128, 144112 ), and MP2.5 (scaled MP3, according to Pitoňák M. ; Neogrády P. ; Černý J. ; Grimme S. ; Hobza P. ChemPhysChem 2009, 10, 282. ). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26613492</pmid><doi>10.1021/ct1002253</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2010-08, Vol.6 (8), p.2365-2376 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_osti_scitechconnect_1001468 |
source | ACS Publications |
subjects | COMPARATIVE EVALUATIONS COMPLEXES DENSITY FUNCTIONAL METHOD Environmental Molecular Sciences Laboratory INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY MATHEMATICAL METHODS AND COMPUTING MOLECULES Quantum Electronic Structure WAVE FUNCTIONS |
title | Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Study%20of%20Selected%20Wave%20Function%20and%20Density%20Functional%20Methods%20for%20Noncovalent%20Interaction%20Energy%20Calculations%20Using%20the%20Extended%20S22%20Data%20Set&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Gra%CC%81fova%CC%81,%20Lucie&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2010-08-10&rft.volume=6&rft.issue=8&rft.spage=2365&rft.epage=2376&rft.pages=2365-2376&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/ct1002253&rft_dat=%3Cproquest_osti_%3E1738483454%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738483454&rft_id=info:pmid/26613492&rfr_iscdi=true |