High speed digital holography for density and fluctuation measurements (invited)

The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2010-10, Vol.81 (10), p.10E527-10E527-7
Hauptverfasser: Thomas, C. E., Baylor, L. R., Combs, S. K., Meitner, S. J., Rasmussen, D. A., Granstedt, E. M., Majeski, R. P., Kaita, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10E527-7
container_issue 10
container_start_page 10E527
container_title Review of scientific instruments
container_volume 81
creator Thomas, C. E.
Baylor, L. R.
Combs, S. K.
Meitner, S. J.
Rasmussen, D. A.
Granstedt, E. M.
Majeski, R. P.
Kaita, R.
description The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼ 40 000   fps at ∼ 64 × 4   pixels ) with resolutions up to 640 × 512   pixels suitable for use with a CO 2 laser are readily available, if expensive.
doi_str_mv 10.1063/1.3492423
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1001311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762031156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EouUx8APIYoEOKb5x4jQLEkJAkSrBALPlVxqjJC6xg9S_x33Ahpc7-Ojcq4PQBZApEEZvYUqzMs1SeoDGQGZlUrCUHqIxITRLWJHNRujE-08SXw5wjEYpxB-S52P0NrfLGvuVMRpru7RBNLh2jVv2YlWvceV6rE3nbVhj0WlcNYMKgwjWdbg1wg-9aU0XPL6x3bcNRk_O0FElGm_O9_MUfTw9vj_Mk8Xr88vD_SJRlLGQgARJJVSqICVRTORCprTIy1QWhZxJZkqpCyAARM0IE6DSkoosZZLmQmda0VN0tfM6Hyz3Ki5XtXJdZ1TgQAhQgAhd76BV774G4wNvrVemaURn3OB57EQil7NITnak6p33van4qret6NfRxTeROfB95Mhe7q2DbI3-I3-rRuBuB2zO2sb637bpz7f9-b4_r-kPr9GLEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762031156</pqid></control><display><type>article</type><title>High speed digital holography for density and fluctuation measurements (invited)</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Thomas, C. E. ; Baylor, L. R. ; Combs, S. K. ; Meitner, S. J. ; Rasmussen, D. A. ; Granstedt, E. M. ; Majeski, R. P. ; Kaita, R.</creator><creatorcontrib>Thomas, C. E. ; Baylor, L. R. ; Combs, S. K. ; Meitner, S. J. ; Rasmussen, D. A. ; Granstedt, E. M. ; Majeski, R. P. ; Kaita, R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼ 40 000   fps at ∼ 64 × 4   pixels ) with resolutions up to 640 × 512   pixels suitable for use with a CO 2 laser are readily available, if expensive.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3492423</identifier><identifier>PMID: 21034055</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CAMERAS ; ELECTRON DENSITY ; FLUCTUATIONS ; HOLOGRAPHY ; INFRARED RADIATION ; LANGMUIR FREQUENCY ; OTHER INSTRUMENTATION ; REFRACTIVE INDEX ; WAVE PROPAGATION ; WAVELENGTHS</subject><ispartof>Review of scientific instruments, 2010-10, Vol.81 (10), p.10E527-10E527-7</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</citedby><cites>FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3492423$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21034055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1001311$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, C. E.</creatorcontrib><creatorcontrib>Baylor, L. R.</creatorcontrib><creatorcontrib>Combs, S. K.</creatorcontrib><creatorcontrib>Meitner, S. J.</creatorcontrib><creatorcontrib>Rasmussen, D. A.</creatorcontrib><creatorcontrib>Granstedt, E. M.</creatorcontrib><creatorcontrib>Majeski, R. P.</creatorcontrib><creatorcontrib>Kaita, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>High speed digital holography for density and fluctuation measurements (invited)</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼ 40 000   fps at ∼ 64 × 4   pixels ) with resolutions up to 640 × 512   pixels suitable for use with a CO 2 laser are readily available, if expensive.</description><subject>CAMERAS</subject><subject>ELECTRON DENSITY</subject><subject>FLUCTUATIONS</subject><subject>HOLOGRAPHY</subject><subject>INFRARED RADIATION</subject><subject>LANGMUIR FREQUENCY</subject><subject>OTHER INSTRUMENTATION</subject><subject>REFRACTIVE INDEX</subject><subject>WAVE PROPAGATION</subject><subject>WAVELENGTHS</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUQC0EouUx8APIYoEOKb5x4jQLEkJAkSrBALPlVxqjJC6xg9S_x33Ahpc7-Ojcq4PQBZApEEZvYUqzMs1SeoDGQGZlUrCUHqIxITRLWJHNRujE-08SXw5wjEYpxB-S52P0NrfLGvuVMRpru7RBNLh2jVv2YlWvceV6rE3nbVhj0WlcNYMKgwjWdbg1wg-9aU0XPL6x3bcNRk_O0FElGm_O9_MUfTw9vj_Mk8Xr88vD_SJRlLGQgARJJVSqICVRTORCprTIy1QWhZxJZkqpCyAARM0IE6DSkoosZZLmQmda0VN0tfM6Hyz3Ki5XtXJdZ1TgQAhQgAhd76BV774G4wNvrVemaURn3OB57EQil7NITnak6p33van4qret6NfRxTeROfB95Mhe7q2DbI3-I3-rRuBuB2zO2sb637bpz7f9-b4_r-kPr9GLEA</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Thomas, C. E.</creator><creator>Baylor, L. R.</creator><creator>Combs, S. K.</creator><creator>Meitner, S. J.</creator><creator>Rasmussen, D. A.</creator><creator>Granstedt, E. M.</creator><creator>Majeski, R. P.</creator><creator>Kaita, R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>High speed digital holography for density and fluctuation measurements (invited)</title><author>Thomas, C. E. ; Baylor, L. R. ; Combs, S. K. ; Meitner, S. J. ; Rasmussen, D. A. ; Granstedt, E. M. ; Majeski, R. P. ; Kaita, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CAMERAS</topic><topic>ELECTRON DENSITY</topic><topic>FLUCTUATIONS</topic><topic>HOLOGRAPHY</topic><topic>INFRARED RADIATION</topic><topic>LANGMUIR FREQUENCY</topic><topic>OTHER INSTRUMENTATION</topic><topic>REFRACTIVE INDEX</topic><topic>WAVE PROPAGATION</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, C. E.</creatorcontrib><creatorcontrib>Baylor, L. R.</creatorcontrib><creatorcontrib>Combs, S. K.</creatorcontrib><creatorcontrib>Meitner, S. J.</creatorcontrib><creatorcontrib>Rasmussen, D. A.</creatorcontrib><creatorcontrib>Granstedt, E. M.</creatorcontrib><creatorcontrib>Majeski, R. P.</creatorcontrib><creatorcontrib>Kaita, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, C. E.</au><au>Baylor, L. R.</au><au>Combs, S. K.</au><au>Meitner, S. J.</au><au>Rasmussen, D. A.</au><au>Granstedt, E. M.</au><au>Majeski, R. P.</au><au>Kaita, R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High speed digital holography for density and fluctuation measurements (invited)</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>81</volume><issue>10</issue><spage>10E527</spage><epage>10E527-7</epage><pages>10E527-10E527-7</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to ∼ 40 000   fps at ∼ 64 × 4   pixels ) with resolutions up to 640 × 512   pixels suitable for use with a CO 2 laser are readily available, if expensive.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21034055</pmid><doi>10.1063/1.3492423</doi></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2010-10, Vol.81 (10), p.10E527-10E527-7
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_1001311
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects CAMERAS
ELECTRON DENSITY
FLUCTUATIONS
HOLOGRAPHY
INFRARED RADIATION
LANGMUIR FREQUENCY
OTHER INSTRUMENTATION
REFRACTIVE INDEX
WAVE PROPAGATION
WAVELENGTHS
title High speed digital holography for density and fluctuation measurements (invited)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20speed%20digital%20holography%20for%20density%20and%20fluctuation%20measurements%20(invited)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Thomas,%20C.%20E.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2010-10-01&rft.volume=81&rft.issue=10&rft.spage=10E527&rft.epage=10E527-7&rft.pages=10E527-10E527-7&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3492423&rft_dat=%3Cproquest_osti_%3E762031156%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762031156&rft_id=info:pmid/21034055&rfr_iscdi=true