High speed digital holography for density and fluctuation measurements (invited)
The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wav...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2010-10, Vol.81 (10), p.10E527-10E527-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10E527-7 |
---|---|
container_issue | 10 |
container_start_page | 10E527 |
container_title | Review of scientific instruments |
container_volume | 81 |
creator | Thomas, C. E. Baylor, L. R. Combs, S. K. Meitner, S. J. Rasmussen, D. A. Granstedt, E. M. Majeski, R. P. Kaita, R. |
description | The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to
∼
40
000
fps
at
∼
64
×
4
pixels
) with resolutions up to
640
×
512
pixels
suitable for use with a
CO
2
laser are readily available, if expensive. |
doi_str_mv | 10.1063/1.3492423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1001311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762031156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQC0EouUx8APIYoEOKb5x4jQLEkJAkSrBALPlVxqjJC6xg9S_x33Ahpc7-Ojcq4PQBZApEEZvYUqzMs1SeoDGQGZlUrCUHqIxITRLWJHNRujE-08SXw5wjEYpxB-S52P0NrfLGvuVMRpru7RBNLh2jVv2YlWvceV6rE3nbVhj0WlcNYMKgwjWdbg1wg-9aU0XPL6x3bcNRk_O0FElGm_O9_MUfTw9vj_Mk8Xr88vD_SJRlLGQgARJJVSqICVRTORCprTIy1QWhZxJZkqpCyAARM0IE6DSkoosZZLmQmda0VN0tfM6Hyz3Ki5XtXJdZ1TgQAhQgAhd76BV774G4wNvrVemaURn3OB57EQil7NITnak6p33van4qret6NfRxTeROfB95Mhe7q2DbI3-I3-rRuBuB2zO2sb637bpz7f9-b4_r-kPr9GLEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762031156</pqid></control><display><type>article</type><title>High speed digital holography for density and fluctuation measurements (invited)</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Thomas, C. E. ; Baylor, L. R. ; Combs, S. K. ; Meitner, S. J. ; Rasmussen, D. A. ; Granstedt, E. M. ; Majeski, R. P. ; Kaita, R.</creator><creatorcontrib>Thomas, C. E. ; Baylor, L. R. ; Combs, S. K. ; Meitner, S. J. ; Rasmussen, D. A. ; Granstedt, E. M. ; Majeski, R. P. ; Kaita, R. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to
∼
40
000
fps
at
∼
64
×
4
pixels
) with resolutions up to
640
×
512
pixels
suitable for use with a
CO
2
laser are readily available, if expensive.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.3492423</identifier><identifier>PMID: 21034055</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>CAMERAS ; ELECTRON DENSITY ; FLUCTUATIONS ; HOLOGRAPHY ; INFRARED RADIATION ; LANGMUIR FREQUENCY ; OTHER INSTRUMENTATION ; REFRACTIVE INDEX ; WAVE PROPAGATION ; WAVELENGTHS</subject><ispartof>Review of scientific instruments, 2010-10, Vol.81 (10), p.10E527-10E527-7</ispartof><rights>2010 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</citedby><cites>FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.3492423$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76127,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21034055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1001311$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, C. E.</creatorcontrib><creatorcontrib>Baylor, L. R.</creatorcontrib><creatorcontrib>Combs, S. K.</creatorcontrib><creatorcontrib>Meitner, S. J.</creatorcontrib><creatorcontrib>Rasmussen, D. A.</creatorcontrib><creatorcontrib>Granstedt, E. M.</creatorcontrib><creatorcontrib>Majeski, R. P.</creatorcontrib><creatorcontrib>Kaita, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>High speed digital holography for density and fluctuation measurements (invited)</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to
∼
40
000
fps
at
∼
64
×
4
pixels
) with resolutions up to
640
×
512
pixels
suitable for use with a
CO
2
laser are readily available, if expensive.</description><subject>CAMERAS</subject><subject>ELECTRON DENSITY</subject><subject>FLUCTUATIONS</subject><subject>HOLOGRAPHY</subject><subject>INFRARED RADIATION</subject><subject>LANGMUIR FREQUENCY</subject><subject>OTHER INSTRUMENTATION</subject><subject>REFRACTIVE INDEX</subject><subject>WAVE PROPAGATION</subject><subject>WAVELENGTHS</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUQC0EouUx8APIYoEOKb5x4jQLEkJAkSrBALPlVxqjJC6xg9S_x33Ahpc7-Ojcq4PQBZApEEZvYUqzMs1SeoDGQGZlUrCUHqIxITRLWJHNRujE-08SXw5wjEYpxB-S52P0NrfLGvuVMRpru7RBNLh2jVv2YlWvceV6rE3nbVhj0WlcNYMKgwjWdbg1wg-9aU0XPL6x3bcNRk_O0FElGm_O9_MUfTw9vj_Mk8Xr88vD_SJRlLGQgARJJVSqICVRTORCprTIy1QWhZxJZkqpCyAARM0IE6DSkoosZZLmQmda0VN0tfM6Hyz3Ki5XtXJdZ1TgQAhQgAhd76BV774G4wNvrVemaURn3OB57EQil7NITnak6p33van4qret6NfRxTeROfB95Mhe7q2DbI3-I3-rRuBuB2zO2sb637bpz7f9-b4_r-kPr9GLEA</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Thomas, C. E.</creator><creator>Baylor, L. R.</creator><creator>Combs, S. K.</creator><creator>Meitner, S. J.</creator><creator>Rasmussen, D. A.</creator><creator>Granstedt, E. M.</creator><creator>Majeski, R. P.</creator><creator>Kaita, R.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>High speed digital holography for density and fluctuation measurements (invited)</title><author>Thomas, C. E. ; Baylor, L. R. ; Combs, S. K. ; Meitner, S. J. ; Rasmussen, D. A. ; Granstedt, E. M. ; Majeski, R. P. ; Kaita, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-1b1b3b1fc7090c6a5ab237592b77b8b6e9bd710110c806a1c293a426b35ad4dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>CAMERAS</topic><topic>ELECTRON DENSITY</topic><topic>FLUCTUATIONS</topic><topic>HOLOGRAPHY</topic><topic>INFRARED RADIATION</topic><topic>LANGMUIR FREQUENCY</topic><topic>OTHER INSTRUMENTATION</topic><topic>REFRACTIVE INDEX</topic><topic>WAVE PROPAGATION</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, C. E.</creatorcontrib><creatorcontrib>Baylor, L. R.</creatorcontrib><creatorcontrib>Combs, S. K.</creatorcontrib><creatorcontrib>Meitner, S. J.</creatorcontrib><creatorcontrib>Rasmussen, D. A.</creatorcontrib><creatorcontrib>Granstedt, E. M.</creatorcontrib><creatorcontrib>Majeski, R. P.</creatorcontrib><creatorcontrib>Kaita, R.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, C. E.</au><au>Baylor, L. R.</au><au>Combs, S. K.</au><au>Meitner, S. J.</au><au>Rasmussen, D. A.</au><au>Granstedt, E. M.</au><au>Majeski, R. P.</au><au>Kaita, R.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High speed digital holography for density and fluctuation measurements (invited)</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>81</volume><issue>10</issue><spage>10E527</spage><epage>10E527-7</epage><pages>10E527-10E527-7</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The state of the art in electro-optics has advanced to the point where digital holographic acquisition of wavefronts is now possible. Holographic wavefront acquisition provides the phase of the wavefront at every measurement point. This can be done with accuracy on the order of a thousandth of a wavelength, given that there is sufficient care in the design of the system. At wave frequencies which are much greater than the plasma frequency, the plasma index of refraction is linearly proportional to the electron density and wavelength, and the measurement of the phase of a wavefront passing through the plasma gives the chord-integrated density directly for all points measured on the wavefront. High-speed infrared cameras (up to
∼
40
000
fps
at
∼
64
×
4
pixels
) with resolutions up to
640
×
512
pixels
suitable for use with a
CO
2
laser are readily available, if expensive.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21034055</pmid><doi>10.1063/1.3492423</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2010-10, Vol.81 (10), p.10E527-10E527-7 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_1001311 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | CAMERAS ELECTRON DENSITY FLUCTUATIONS HOLOGRAPHY INFRARED RADIATION LANGMUIR FREQUENCY OTHER INSTRUMENTATION REFRACTIVE INDEX WAVE PROPAGATION WAVELENGTHS |
title | High speed digital holography for density and fluctuation measurements (invited) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20speed%20digital%20holography%20for%20density%20and%20fluctuation%20measurements%20(invited)&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Thomas,%20C.%20E.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2010-10-01&rft.volume=81&rft.issue=10&rft.spage=10E527&rft.epage=10E527-7&rft.pages=10E527-10E527-7&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.3492423&rft_dat=%3Cproquest_osti_%3E762031156%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762031156&rft_id=info:pmid/21034055&rfr_iscdi=true |