Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection

A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tube...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2011-01, Vol.3 (3), p.1008-1013
Hauptverfasser: Cruz-Silva, Eduardo, Lopez-Urias, Florentino, Munoz-Sandoval, Emilio, Sumpter, Bobby G, Terrones, Humberto, Charlier, Jean-Christophe, Meunier, Vincent, Terrones, Mauricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 3
container_start_page 1008
container_title Nanoscale
container_volume 3
creator Cruz-Silva, Eduardo
Lopez-Urias, Florentino
Munoz-Sandoval, Emilio
Sumpter, Bobby G
Terrones, Humberto
Charlier, Jean-Christophe
Meunier, Vincent
Terrones, Mauricio
description A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.
doi_str_mv 10.1039/c0nr00519c
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1000732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963864240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMozji68QdIcSMI1aRJk-lSii8YVETXJU1unUqb1CQV_PdmHs7W1b3n8nHOhYPQKcFXBNPiWmHjMM5JofbQNMMMp5SKbH-3czZBR95_YswLyukhmmSE5FlO2RSZl6X1w9K60SfS6GTYydS0wdkPMIm2A-hESVdbkxhpbBhr8EljXTJ2wUkPxreh_Ya1g4cO1Fr1Nm5jJ12iIaxu1hyjg0Z2Hk62c4be727fyod08Xz_WN4sUsUICanQqm4olkoUQEDmjNGi4ZpTIQRrxFzWrNAqUzWVWiiqoQEBuaK5qnm8EzpD5xtf60NbedXG_KWyxsQ3KoIxFjSL0MUGGpz9GsGHqm-9gq6TBuzoq4LTOWcZw_-S85wLXuTZPJKXG1I5672Dphpc20v3E1OrVVtViZ9e122VET7b2o51D3qH_tVDfwGlJJLD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856769528</pqid></control><display><type>article</type><title>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cruz-Silva, Eduardo ; Lopez-Urias, Florentino ; Munoz-Sandoval, Emilio ; Sumpter, Bobby G ; Terrones, Humberto ; Charlier, Jean-Christophe ; Meunier, Vincent ; Terrones, Mauricio</creator><creatorcontrib>Cruz-Silva, Eduardo ; Lopez-Urias, Florentino ; Munoz-Sandoval, Emilio ; Sumpter, Bobby G ; Terrones, Humberto ; Charlier, Jean-Christophe ; Meunier, Vincent ; Terrones, Mauricio ; Center for Computational Sciences ; Center for Nanophase Materials Sciences ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c0nr00519c</identifier><identifier>PMID: 21152534</identifier><language>eng</language><publisher>England</publisher><subject>30 DIRECT ENERGY CONVERSION ; ADSORPTION ; AFFINITY ; ATOMS ; CARBON ; Carbon nanotubes ; CHEMICAL PROPERTIES ; Conductance ; Conductometry - instrumentation ; DETECTION ; ELECTRODES ; Electronics ; Equipment Design ; Equipment Failure Analysis ; HYDROGEN FUEL CELLS ; Materials Testing ; Molecular Probe Techniques - instrumentation ; Nanostructure ; NANOTUBES ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; NITROGEN ; Nitrogen - chemistry ; Nitrogen dioxide ; OXIDATION ; Particle Size ; PHOSPHORUS ; Phosphorus - chemistry ; Surface chemistry</subject><ispartof>Nanoscale, 2011-01, Vol.3 (3), p.1008-1013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</citedby><cites>FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21152534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1000732$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz-Silva, Eduardo</creatorcontrib><creatorcontrib>Lopez-Urias, Florentino</creatorcontrib><creatorcontrib>Munoz-Sandoval, Emilio</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Charlier, Jean-Christophe</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>ADSORPTION</subject><subject>AFFINITY</subject><subject>ATOMS</subject><subject>CARBON</subject><subject>Carbon nanotubes</subject><subject>CHEMICAL PROPERTIES</subject><subject>Conductance</subject><subject>Conductometry - instrumentation</subject><subject>DETECTION</subject><subject>ELECTRODES</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>HYDROGEN FUEL CELLS</subject><subject>Materials Testing</subject><subject>Molecular Probe Techniques - instrumentation</subject><subject>Nanostructure</subject><subject>NANOTUBES</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>NITROGEN</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen dioxide</subject><subject>OXIDATION</subject><subject>Particle Size</subject><subject>PHOSPHORUS</subject><subject>Phosphorus - chemistry</subject><subject>Surface chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMozji68QdIcSMI1aRJk-lSii8YVETXJU1unUqb1CQV_PdmHs7W1b3n8nHOhYPQKcFXBNPiWmHjMM5JofbQNMMMp5SKbH-3czZBR95_YswLyukhmmSE5FlO2RSZl6X1w9K60SfS6GTYydS0wdkPMIm2A-hESVdbkxhpbBhr8EljXTJ2wUkPxreh_Ya1g4cO1Fr1Nm5jJ12iIaxu1hyjg0Z2Hk62c4be727fyod08Xz_WN4sUsUICanQqm4olkoUQEDmjNGi4ZpTIQRrxFzWrNAqUzWVWiiqoQEBuaK5qnm8EzpD5xtf60NbedXG_KWyxsQ3KoIxFjSL0MUGGpz9GsGHqm-9gq6TBuzoq4LTOWcZw_-S85wLXuTZPJKXG1I5672Dphpc20v3E1OrVVtViZ9e122VET7b2o51D3qH_tVDfwGlJJLD</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Cruz-Silva, Eduardo</creator><creator>Lopez-Urias, Florentino</creator><creator>Munoz-Sandoval, Emilio</creator><creator>Sumpter, Bobby G</creator><creator>Terrones, Humberto</creator><creator>Charlier, Jean-Christophe</creator><creator>Meunier, Vincent</creator><creator>Terrones, Mauricio</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</title><author>Cruz-Silva, Eduardo ; Lopez-Urias, Florentino ; Munoz-Sandoval, Emilio ; Sumpter, Bobby G ; Terrones, Humberto ; Charlier, Jean-Christophe ; Meunier, Vincent ; Terrones, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>ADSORPTION</topic><topic>AFFINITY</topic><topic>ATOMS</topic><topic>CARBON</topic><topic>Carbon nanotubes</topic><topic>CHEMICAL PROPERTIES</topic><topic>Conductance</topic><topic>Conductometry - instrumentation</topic><topic>DETECTION</topic><topic>ELECTRODES</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>HYDROGEN FUEL CELLS</topic><topic>Materials Testing</topic><topic>Molecular Probe Techniques - instrumentation</topic><topic>Nanostructure</topic><topic>NANOTUBES</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>NITROGEN</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen dioxide</topic><topic>OXIDATION</topic><topic>Particle Size</topic><topic>PHOSPHORUS</topic><topic>Phosphorus - chemistry</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Silva, Eduardo</creatorcontrib><creatorcontrib>Lopez-Urias, Florentino</creatorcontrib><creatorcontrib>Munoz-Sandoval, Emilio</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Charlier, Jean-Christophe</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Silva, Eduardo</au><au>Lopez-Urias, Florentino</au><au>Munoz-Sandoval, Emilio</au><au>Sumpter, Bobby G</au><au>Terrones, Humberto</au><au>Charlier, Jean-Christophe</au><au>Meunier, Vincent</au><au>Terrones, Mauricio</au><aucorp>Center for Computational Sciences</aucorp><aucorp>Center for Nanophase Materials Sciences</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>3</volume><issue>3</issue><spage>1008</spage><epage>1013</epage><pages>1008-1013</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.</abstract><cop>England</cop><pmid>21152534</pmid><doi>10.1039/c0nr00519c</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2011-01, Vol.3 (3), p.1008-1013
issn 2040-3364
2040-3372
language eng
recordid cdi_osti_scitechconnect_1000732
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects 30 DIRECT ENERGY CONVERSION
ADSORPTION
AFFINITY
ATOMS
CARBON
Carbon nanotubes
CHEMICAL PROPERTIES
Conductance
Conductometry - instrumentation
DETECTION
ELECTRODES
Electronics
Equipment Design
Equipment Failure Analysis
HYDROGEN FUEL CELLS
Materials Testing
Molecular Probe Techniques - instrumentation
Nanostructure
NANOTUBES
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
NITROGEN
Nitrogen - chemistry
Nitrogen dioxide
OXIDATION
Particle Size
PHOSPHORUS
Phosphorus - chemistry
Surface chemistry
title Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus%20and%20phosphorus-nitrogen%20doped%20carbon%20nanotubes%20for%20ultrasensitive%20and%20selective%20molecular%20detection&rft.jtitle=Nanoscale&rft.au=Cruz-Silva,%20Eduardo&rft.aucorp=Center%20for%20Computational%20Sciences&rft.date=2011-01-01&rft.volume=3&rft.issue=3&rft.spage=1008&rft.epage=1013&rft.pages=1008-1013&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c0nr00519c&rft_dat=%3Cproquest_osti_%3E963864240%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856769528&rft_id=info:pmid/21152534&rfr_iscdi=true