Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection
A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tube...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2011-01, Vol.3 (3), p.1008-1013 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1013 |
---|---|
container_issue | 3 |
container_start_page | 1008 |
container_title | Nanoscale |
container_volume | 3 |
creator | Cruz-Silva, Eduardo Lopez-Urias, Florentino Munoz-Sandoval, Emilio Sumpter, Bobby G Terrones, Humberto Charlier, Jean-Christophe Meunier, Vincent Terrones, Mauricio |
description | A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells. |
doi_str_mv | 10.1039/c0nr00519c |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1000732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963864240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMozji68QdIcSMI1aRJk-lSii8YVETXJU1unUqb1CQV_PdmHs7W1b3n8nHOhYPQKcFXBNPiWmHjMM5JofbQNMMMp5SKbH-3czZBR95_YswLyukhmmSE5FlO2RSZl6X1w9K60SfS6GTYydS0wdkPMIm2A-hESVdbkxhpbBhr8EljXTJ2wUkPxreh_Ya1g4cO1Fr1Nm5jJ12iIaxu1hyjg0Z2Hk62c4be727fyod08Xz_WN4sUsUICanQqm4olkoUQEDmjNGi4ZpTIQRrxFzWrNAqUzWVWiiqoQEBuaK5qnm8EzpD5xtf60NbedXG_KWyxsQ3KoIxFjSL0MUGGpz9GsGHqm-9gq6TBuzoq4LTOWcZw_-S85wLXuTZPJKXG1I5672Dphpc20v3E1OrVVtViZ9e122VET7b2o51D3qH_tVDfwGlJJLD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856769528</pqid></control><display><type>article</type><title>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Cruz-Silva, Eduardo ; Lopez-Urias, Florentino ; Munoz-Sandoval, Emilio ; Sumpter, Bobby G ; Terrones, Humberto ; Charlier, Jean-Christophe ; Meunier, Vincent ; Terrones, Mauricio</creator><creatorcontrib>Cruz-Silva, Eduardo ; Lopez-Urias, Florentino ; Munoz-Sandoval, Emilio ; Sumpter, Bobby G ; Terrones, Humberto ; Charlier, Jean-Christophe ; Meunier, Vincent ; Terrones, Mauricio ; Center for Computational Sciences ; Center for Nanophase Materials Sciences ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c0nr00519c</identifier><identifier>PMID: 21152534</identifier><language>eng</language><publisher>England</publisher><subject>30 DIRECT ENERGY CONVERSION ; ADSORPTION ; AFFINITY ; ATOMS ; CARBON ; Carbon nanotubes ; CHEMICAL PROPERTIES ; Conductance ; Conductometry - instrumentation ; DETECTION ; ELECTRODES ; Electronics ; Equipment Design ; Equipment Failure Analysis ; HYDROGEN FUEL CELLS ; Materials Testing ; Molecular Probe Techniques - instrumentation ; Nanostructure ; NANOTUBES ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; NITROGEN ; Nitrogen - chemistry ; Nitrogen dioxide ; OXIDATION ; Particle Size ; PHOSPHORUS ; Phosphorus - chemistry ; Surface chemistry</subject><ispartof>Nanoscale, 2011-01, Vol.3 (3), p.1008-1013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</citedby><cites>FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21152534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1000732$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz-Silva, Eduardo</creatorcontrib><creatorcontrib>Lopez-Urias, Florentino</creatorcontrib><creatorcontrib>Munoz-Sandoval, Emilio</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Charlier, Jean-Christophe</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.</description><subject>30 DIRECT ENERGY CONVERSION</subject><subject>ADSORPTION</subject><subject>AFFINITY</subject><subject>ATOMS</subject><subject>CARBON</subject><subject>Carbon nanotubes</subject><subject>CHEMICAL PROPERTIES</subject><subject>Conductance</subject><subject>Conductometry - instrumentation</subject><subject>DETECTION</subject><subject>ELECTRODES</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>HYDROGEN FUEL CELLS</subject><subject>Materials Testing</subject><subject>Molecular Probe Techniques - instrumentation</subject><subject>Nanostructure</subject><subject>NANOTUBES</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>NITROGEN</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen dioxide</subject><subject>OXIDATION</subject><subject>Particle Size</subject><subject>PHOSPHORUS</subject><subject>Phosphorus - chemistry</subject><subject>Surface chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAUhYMozji68QdIcSMI1aRJk-lSii8YVETXJU1unUqb1CQV_PdmHs7W1b3n8nHOhYPQKcFXBNPiWmHjMM5JofbQNMMMp5SKbH-3czZBR95_YswLyukhmmSE5FlO2RSZl6X1w9K60SfS6GTYydS0wdkPMIm2A-hESVdbkxhpbBhr8EljXTJ2wUkPxreh_Ya1g4cO1Fr1Nm5jJ12iIaxu1hyjg0Z2Hk62c4be727fyod08Xz_WN4sUsUICanQqm4olkoUQEDmjNGi4ZpTIQRrxFzWrNAqUzWVWiiqoQEBuaK5qnm8EzpD5xtf60NbedXG_KWyxsQ3KoIxFjSL0MUGGpz9GsGHqm-9gq6TBuzoq4LTOWcZw_-S85wLXuTZPJKXG1I5672Dphpc20v3E1OrVVtViZ9e122VET7b2o51D3qH_tVDfwGlJJLD</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Cruz-Silva, Eduardo</creator><creator>Lopez-Urias, Florentino</creator><creator>Munoz-Sandoval, Emilio</creator><creator>Sumpter, Bobby G</creator><creator>Terrones, Humberto</creator><creator>Charlier, Jean-Christophe</creator><creator>Meunier, Vincent</creator><creator>Terrones, Mauricio</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</title><author>Cruz-Silva, Eduardo ; Lopez-Urias, Florentino ; Munoz-Sandoval, Emilio ; Sumpter, Bobby G ; Terrones, Humberto ; Charlier, Jean-Christophe ; Meunier, Vincent ; Terrones, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7dcbf30ac79e1ea54439f6d637774f78ab49dc2cb3ad7c3defe7e5c35cb6dc213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>30 DIRECT ENERGY CONVERSION</topic><topic>ADSORPTION</topic><topic>AFFINITY</topic><topic>ATOMS</topic><topic>CARBON</topic><topic>Carbon nanotubes</topic><topic>CHEMICAL PROPERTIES</topic><topic>Conductance</topic><topic>Conductometry - instrumentation</topic><topic>DETECTION</topic><topic>ELECTRODES</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>HYDROGEN FUEL CELLS</topic><topic>Materials Testing</topic><topic>Molecular Probe Techniques - instrumentation</topic><topic>Nanostructure</topic><topic>NANOTUBES</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>NITROGEN</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen dioxide</topic><topic>OXIDATION</topic><topic>Particle Size</topic><topic>PHOSPHORUS</topic><topic>Phosphorus - chemistry</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz-Silva, Eduardo</creatorcontrib><creatorcontrib>Lopez-Urias, Florentino</creatorcontrib><creatorcontrib>Munoz-Sandoval, Emilio</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><creatorcontrib>Terrones, Humberto</creatorcontrib><creatorcontrib>Charlier, Jean-Christophe</creatorcontrib><creatorcontrib>Meunier, Vincent</creatorcontrib><creatorcontrib>Terrones, Mauricio</creatorcontrib><creatorcontrib>Center for Computational Sciences</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz-Silva, Eduardo</au><au>Lopez-Urias, Florentino</au><au>Munoz-Sandoval, Emilio</au><au>Sumpter, Bobby G</au><au>Terrones, Humberto</au><au>Charlier, Jean-Christophe</au><au>Meunier, Vincent</au><au>Terrones, Mauricio</au><aucorp>Center for Computational Sciences</aucorp><aucorp>Center for Nanophase Materials Sciences</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>3</volume><issue>3</issue><spage>1008</spage><epage>1013</epage><pages>1008-1013</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>A first-principles approach is used to establish that substitutional phosphorus atoms within carbon nanotubes strongly modify the chemical properties of the surface, thus creating highly localized sites with specific affinity towards acceptor molecules. Phosphorus-nitrogen co-dopants within the tubes have a similar effect for acceptor molecules, but the P-N bond can also accept charge, resulting in affinity towards donor molecules. This molecular selectivity is illustrated in CO and NH3 adsorbed on PN-doped nanotubes, O2 on P-doped nanotubes, and NO2 and SO2 on both P- and PN-doped nanotubes. The adsorption of different chemical species onto the doped nanotubes modifies the dopant-induced localized states, which subsequently alter the electronic conductance. Although SO2 and CO adsorptions cause minor shifts in electronic conductance, NH3, NO2, and O2 adsorptions induce the suppression of a conductance dip. Conversely, the adsorption of NO2 on PN-doped nanotubes is accompanied with the appearance of an additional dip in conductance, correlated with a shift of the existing ones. Overall these changes in electric conductance provide an efficient way to detect selectively the presence of specific molecules. Additionally, the high oxidation potential of the P-doped nanotubes makes them good candidates for electrode materials in hydrogen fuel cells.</abstract><cop>England</cop><pmid>21152534</pmid><doi>10.1039/c0nr00519c</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2011-01, Vol.3 (3), p.1008-1013 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_osti_scitechconnect_1000732 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | 30 DIRECT ENERGY CONVERSION ADSORPTION AFFINITY ATOMS CARBON Carbon nanotubes CHEMICAL PROPERTIES Conductance Conductometry - instrumentation DETECTION ELECTRODES Electronics Equipment Design Equipment Failure Analysis HYDROGEN FUEL CELLS Materials Testing Molecular Probe Techniques - instrumentation Nanostructure NANOTUBES Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure NITROGEN Nitrogen - chemistry Nitrogen dioxide OXIDATION Particle Size PHOSPHORUS Phosphorus - chemistry Surface chemistry |
title | Phosphorus and phosphorus-nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus%20and%20phosphorus-nitrogen%20doped%20carbon%20nanotubes%20for%20ultrasensitive%20and%20selective%20molecular%20detection&rft.jtitle=Nanoscale&rft.au=Cruz-Silva,%20Eduardo&rft.aucorp=Center%20for%20Computational%20Sciences&rft.date=2011-01-01&rft.volume=3&rft.issue=3&rft.spage=1008&rft.epage=1013&rft.pages=1008-1013&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c0nr00519c&rft_dat=%3Cproquest_osti_%3E963864240%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856769528&rft_id=info:pmid/21152534&rfr_iscdi=true |