Bioinformatics and Machine Learning for Cancer Biology

Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigeno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
description Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.
doi_str_mv 10.3390/books978-3-0365-4813-5
format Book
fullrecord <record><control><sourceid>oapen</sourceid><recordid>TN_cdi_oapen_doabooks_97414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>97414</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2323-c85c1e127654f3b17ee21dc0228669bb7c1e6d7eca3d687b953928a49b2b8e333</originalsourceid><addsrcrecordid>eNotj8tKBDEURAMiKGN_wYDkB6JJbjqPpTa-oMWNsx7yuD0THRPpduPfG3VWBaeKKoqQS8GvABy_DrW-L85YBoyD7pmyAlh_QrrG4Jc0oOQZ6ZbljXMuHbfaiHOib3PNZarzh__KcaG-JPrs4z4XpCP6ueSyo82mgy8RZ9rih7r7viCnkz8s2B11RTb3d6_DIxtfHp6Gm5HtJUhg0fZRoJCm7U8QhEGUIkUupdXahWCaq5PB6CFpa4LrwUnrlQsyWASAFVn_91b_iWWbqv87unVGCQU_qCRF7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Bioinformatics and Machine Learning for Cancer Biology</title><source>DOAB: Directory of Open Access Books</source><contributor>Li, Shengli ; Fan, Yiping ; Wan, Shibiao ; Jiang, Chunjie</contributor><creatorcontrib>Li, Shengli ; Fan, Yiping ; Wan, Shibiao ; Jiang, Chunjie</creatorcontrib><description>Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.</description><identifier>ISBN: 9783036548142</identifier><identifier>ISBN: 9783036548135</identifier><identifier>ISBN: 3036548149</identifier><identifier>ISBN: 3036548130</identifier><identifier>DOI: 10.3390/books978-3-0365-4813-5</identifier><language>eng</language><publisher>Basel: MDPI - Multidisciplinary Digital Publishing Institute</publisher><subject>Annexin family ; architectural distortion ; ARIMA ; bidirectional long short-term memory neural network ; Biology, life sciences ; biomarker ; biomarker identification ; biomedical informatics ; bladder cancer ; bladder urothelial carcinoma ; Book Industry Communication ; breast cancer ; cancer ; CCLE ; checkpoint ; CPA4 ; ctDNA ; deep learning ; DEGs ; depth-wise convolutional neural network ; diagnosis ; DNA damage repair genes ; drug resistance ; drug-drug interaction networks ; estrogen receptor alpha ; filtering ; forecasting ; Google Trends ; image processing ; immune cells ; immunotherapy ; incidence ; liquid biopsy ; machine learning ; major histocompatibility complex ; mammography ; Mathematics &amp; science ; metastasis ; modeling ; molecular docking ; mortality ; multi-omics analysis ; n/a ; NGS ; NNAR ; ovarian cancer ; papillary thyroid cancer (PTCa) ; persistent organic pollutants ; prediction ; prognostic signature ; proteomics ; PUS7 ; R Shiny application ; Reference, information &amp; interdisciplinary subjects ; Research &amp; information: general ; RMGs ; RNA-seq ; Romania ; sitagliptin ; survival analysis ; T cell exhaustion ; T-cell acute lymphoblastic leukemia ; TBATS ; therapeutic target ; thyroid cancer (THCA) ; thyroidectomy ; transcriptomics ; tumor mutational burden ; VAF ; variable selection ; variant calling</subject><creationdate>2022</creationdate><tpages>196</tpages><format>196</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786,27925,55310</link.rule.ids></links><search><contributor>Li, Shengli</contributor><contributor>Fan, Yiping</contributor><contributor>Wan, Shibiao</contributor><contributor>Jiang, Chunjie</contributor><title>Bioinformatics and Machine Learning for Cancer Biology</title><description>Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.</description><subject>Annexin family</subject><subject>architectural distortion</subject><subject>ARIMA</subject><subject>bidirectional long short-term memory neural network</subject><subject>Biology, life sciences</subject><subject>biomarker</subject><subject>biomarker identification</subject><subject>biomedical informatics</subject><subject>bladder cancer</subject><subject>bladder urothelial carcinoma</subject><subject>Book Industry Communication</subject><subject>breast cancer</subject><subject>cancer</subject><subject>CCLE</subject><subject>checkpoint</subject><subject>CPA4</subject><subject>ctDNA</subject><subject>deep learning</subject><subject>DEGs</subject><subject>depth-wise convolutional neural network</subject><subject>diagnosis</subject><subject>DNA damage repair genes</subject><subject>drug resistance</subject><subject>drug-drug interaction networks</subject><subject>estrogen receptor alpha</subject><subject>filtering</subject><subject>forecasting</subject><subject>Google Trends</subject><subject>image processing</subject><subject>immune cells</subject><subject>immunotherapy</subject><subject>incidence</subject><subject>liquid biopsy</subject><subject>machine learning</subject><subject>major histocompatibility complex</subject><subject>mammography</subject><subject>Mathematics &amp; science</subject><subject>metastasis</subject><subject>modeling</subject><subject>molecular docking</subject><subject>mortality</subject><subject>multi-omics analysis</subject><subject>n/a</subject><subject>NGS</subject><subject>NNAR</subject><subject>ovarian cancer</subject><subject>papillary thyroid cancer (PTCa)</subject><subject>persistent organic pollutants</subject><subject>prediction</subject><subject>prognostic signature</subject><subject>proteomics</subject><subject>PUS7</subject><subject>R Shiny application</subject><subject>Reference, information &amp; interdisciplinary subjects</subject><subject>Research &amp; information: general</subject><subject>RMGs</subject><subject>RNA-seq</subject><subject>Romania</subject><subject>sitagliptin</subject><subject>survival analysis</subject><subject>T cell exhaustion</subject><subject>T-cell acute lymphoblastic leukemia</subject><subject>TBATS</subject><subject>therapeutic target</subject><subject>thyroid cancer (THCA)</subject><subject>thyroidectomy</subject><subject>transcriptomics</subject><subject>tumor mutational burden</subject><subject>VAF</subject><subject>variable selection</subject><subject>variant calling</subject><isbn>9783036548142</isbn><isbn>9783036548135</isbn><isbn>3036548149</isbn><isbn>3036548130</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2022</creationdate><recordtype>book</recordtype><sourceid>V1H</sourceid><recordid>eNotj8tKBDEURAMiKGN_wYDkB6JJbjqPpTa-oMWNsx7yuD0THRPpduPfG3VWBaeKKoqQS8GvABy_DrW-L85YBoyD7pmyAlh_QrrG4Jc0oOQZ6ZbljXMuHbfaiHOib3PNZarzh__KcaG-JPrs4z4XpCP6ueSyo82mgy8RZ9rih7r7viCnkz8s2B11RTb3d6_DIxtfHp6Gm5HtJUhg0fZRoJCm7U8QhEGUIkUupdXahWCaq5PB6CFpa4LrwUnrlQsyWASAFVn_91b_iWWbqv87unVGCQU_qCRF7Q</recordid><startdate>2022</startdate><enddate>2022</enddate><general>MDPI - Multidisciplinary Digital Publishing Institute</general><scope>V1H</scope></search><sort><creationdate>2022</creationdate><title>Bioinformatics and Machine Learning for Cancer Biology</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2323-c85c1e127654f3b17ee21dc0228669bb7c1e6d7eca3d687b953928a49b2b8e333</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annexin family</topic><topic>architectural distortion</topic><topic>ARIMA</topic><topic>bidirectional long short-term memory neural network</topic><topic>Biology, life sciences</topic><topic>biomarker</topic><topic>biomarker identification</topic><topic>biomedical informatics</topic><topic>bladder cancer</topic><topic>bladder urothelial carcinoma</topic><topic>Book Industry Communication</topic><topic>breast cancer</topic><topic>cancer</topic><topic>CCLE</topic><topic>checkpoint</topic><topic>CPA4</topic><topic>ctDNA</topic><topic>deep learning</topic><topic>DEGs</topic><topic>depth-wise convolutional neural network</topic><topic>diagnosis</topic><topic>DNA damage repair genes</topic><topic>drug resistance</topic><topic>drug-drug interaction networks</topic><topic>estrogen receptor alpha</topic><topic>filtering</topic><topic>forecasting</topic><topic>Google Trends</topic><topic>image processing</topic><topic>immune cells</topic><topic>immunotherapy</topic><topic>incidence</topic><topic>liquid biopsy</topic><topic>machine learning</topic><topic>major histocompatibility complex</topic><topic>mammography</topic><topic>Mathematics &amp; science</topic><topic>metastasis</topic><topic>modeling</topic><topic>molecular docking</topic><topic>mortality</topic><topic>multi-omics analysis</topic><topic>n/a</topic><topic>NGS</topic><topic>NNAR</topic><topic>ovarian cancer</topic><topic>papillary thyroid cancer (PTCa)</topic><topic>persistent organic pollutants</topic><topic>prediction</topic><topic>prognostic signature</topic><topic>proteomics</topic><topic>PUS7</topic><topic>R Shiny application</topic><topic>Reference, information &amp; interdisciplinary subjects</topic><topic>Research &amp; information: general</topic><topic>RMGs</topic><topic>RNA-seq</topic><topic>Romania</topic><topic>sitagliptin</topic><topic>survival analysis</topic><topic>T cell exhaustion</topic><topic>T-cell acute lymphoblastic leukemia</topic><topic>TBATS</topic><topic>therapeutic target</topic><topic>thyroid cancer (THCA)</topic><topic>thyroidectomy</topic><topic>transcriptomics</topic><topic>tumor mutational burden</topic><topic>VAF</topic><topic>variable selection</topic><topic>variant calling</topic><toplevel>online_resources</toplevel><collection>DOAB: Directory of Open Access Books</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shengli</au><au>Fan, Yiping</au><au>Wan, Shibiao</au><au>Jiang, Chunjie</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Bioinformatics and Machine Learning for Cancer Biology</btitle><date>2022</date><risdate>2022</risdate><isbn>9783036548142</isbn><isbn>9783036548135</isbn><isbn>3036548149</isbn><isbn>3036548130</isbn><abstract>Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer.</abstract><cop>Basel</cop><pub>MDPI - Multidisciplinary Digital Publishing Institute</pub><doi>10.3390/books978-3-0365-4813-5</doi><tpages>196</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 9783036548142
ispartof
issn
language eng
recordid cdi_oapen_doabooks_97414
source DOAB: Directory of Open Access Books
subjects Annexin family
architectural distortion
ARIMA
bidirectional long short-term memory neural network
Biology, life sciences
biomarker
biomarker identification
biomedical informatics
bladder cancer
bladder urothelial carcinoma
Book Industry Communication
breast cancer
cancer
CCLE
checkpoint
CPA4
ctDNA
deep learning
DEGs
depth-wise convolutional neural network
diagnosis
DNA damage repair genes
drug resistance
drug-drug interaction networks
estrogen receptor alpha
filtering
forecasting
Google Trends
image processing
immune cells
immunotherapy
incidence
liquid biopsy
machine learning
major histocompatibility complex
mammography
Mathematics & science
metastasis
modeling
molecular docking
mortality
multi-omics analysis
n/a
NGS
NNAR
ovarian cancer
papillary thyroid cancer (PTCa)
persistent organic pollutants
prediction
prognostic signature
proteomics
PUS7
R Shiny application
Reference, information & interdisciplinary subjects
Research & information: general
RMGs
RNA-seq
Romania
sitagliptin
survival analysis
T cell exhaustion
T-cell acute lymphoblastic leukemia
TBATS
therapeutic target
thyroid cancer (THCA)
thyroidectomy
transcriptomics
tumor mutational burden
VAF
variable selection
variant calling
title Bioinformatics and Machine Learning for Cancer Biology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oapen&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Bioinformatics%20and%20Machine%20Learning%20for%20Cancer%20Biology&rft.au=Li,%20Shengli&rft.date=2022&rft.isbn=9783036548142&rft.isbn_list=9783036548135&rft.isbn_list=3036548149&rft.isbn_list=3036548130&rft_id=info:doi/10.3390/books978-3-0365-4813-5&rft_dat=%3Coapen%3E97414%3C/oapen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true