Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme
To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | ger |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Liebner, Martin |
description | To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account. |
doi_str_mv | 10.5445/KSP/1000053685 |
format | Book |
fullrecord | <record><control><sourceid>oapen</sourceid><recordid>TN_cdi_oapen_doabooks_47328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>47328</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1606-fd4d8c49d68dbba6e0105ab4f154af62c55a0432d6bdef6e2cefe11d57d4519c3</originalsourceid><addsrcrecordid>eNotjM1KAzEUhQMqWGu3btzMC4zNTXIzmaUUq2LB4s-6JJMbO45mJJlS9Nnc-WJW7Nl8cPjOYewM-AUqhdO7x-UU-C4otcEDdiIrCciRG3PIRqBBlkqAOmaTnF93mjB1jZUeseXcrhMl63LbrIdMqaMYN_Gl2ERfPLS57XpHW0rDXxd-vlOxtSlS9FTslzm3eaD4lT93eKdTdhTsW6bJnmP2PL96mt2Ui_vr29nlomxBc10Gr7xpVO218c5ZTRw4WqcCoLJBiwbRciWF185T0CQaCgTgsfIKoW7kmJ3___b2g-LK99b1fZdXqpLCyF-_ZFKm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</title><source>DOAB: Directory of Open Access Books</source><creator>Liebner, Martin</creator><creatorcontrib>Liebner, Martin</creatorcontrib><description>To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.</description><identifier>ISSN: 1613-4214</identifier><identifier>ISBN: 3731505088</identifier><identifier>ISBN: 9783731505082</identifier><identifier>DOI: 10.5445/KSP/1000053685</identifier><language>ger</language><publisher>KIT Scientific Publishing</publisher><subject>Driver Model ; Dynamic Bayesian Network ; Dynamisches Bayes'sches NetzDriver Intent Inference ; Fahrerabsichtserkennung ; Fahrerverhaltensmodell ; Risikobewertung ; Risk Assessment ; Situation Awareness ; Situationsbewusstsein ; T1-995 ; Technology, Engineering, Agriculture, Industrial processes ; Technology: general issues</subject><creationdate>2016</creationdate><tpages>XX, 159</tpages><format>XX, 159</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782,27902,55285</link.rule.ids></links><search><creatorcontrib>Liebner, Martin</creatorcontrib><title>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</title><description>To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.</description><subject>Driver Model</subject><subject>Dynamic Bayesian Network</subject><subject>Dynamisches Bayes'sches NetzDriver Intent Inference</subject><subject>Fahrerabsichtserkennung</subject><subject>Fahrerverhaltensmodell</subject><subject>Risikobewertung</subject><subject>Risk Assessment</subject><subject>Situation Awareness</subject><subject>Situationsbewusstsein</subject><subject>T1-995</subject><subject>Technology, Engineering, Agriculture, Industrial processes</subject><subject>Technology: general issues</subject><issn>1613-4214</issn><isbn>3731505088</isbn><isbn>9783731505082</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2016</creationdate><recordtype>book</recordtype><sourceid>V1H</sourceid><recordid>eNotjM1KAzEUhQMqWGu3btzMC4zNTXIzmaUUq2LB4s-6JJMbO45mJJlS9Nnc-WJW7Nl8cPjOYewM-AUqhdO7x-UU-C4otcEDdiIrCciRG3PIRqBBlkqAOmaTnF93mjB1jZUeseXcrhMl63LbrIdMqaMYN_Gl2ERfPLS57XpHW0rDXxd-vlOxtSlS9FTslzm3eaD4lT93eKdTdhTsW6bJnmP2PL96mt2Ui_vr29nlomxBc10Gr7xpVO218c5ZTRw4WqcCoLJBiwbRciWF185T0CQaCgTgsfIKoW7kmJ3___b2g-LK99b1fZdXqpLCyF-_ZFKm</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Liebner, Martin</creator><general>KIT Scientific Publishing</general><scope>V1H</scope></search><sort><creationdate>2016</creationdate><title>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</title><author>Liebner, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1606-fd4d8c49d68dbba6e0105ab4f154af62c55a0432d6bdef6e2cefe11d57d4519c3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>ger</language><creationdate>2016</creationdate><topic>Driver Model</topic><topic>Dynamic Bayesian Network</topic><topic>Dynamisches Bayes'sches NetzDriver Intent Inference</topic><topic>Fahrerabsichtserkennung</topic><topic>Fahrerverhaltensmodell</topic><topic>Risikobewertung</topic><topic>Risk Assessment</topic><topic>Situation Awareness</topic><topic>Situationsbewusstsein</topic><topic>T1-995</topic><topic>Technology, Engineering, Agriculture, Industrial processes</topic><topic>Technology: general issues</topic><toplevel>online_resources</toplevel><creatorcontrib>Liebner, Martin</creatorcontrib><collection>DOAB: Directory of Open Access Books</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebner, Martin</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</btitle><seriestitle>Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie</seriestitle><date>2016</date><risdate>2016</risdate><issn>1613-4214</issn><isbn>3731505088</isbn><isbn>9783731505082</isbn><abstract>To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.</abstract><pub>KIT Scientific Publishing</pub><doi>10.5445/KSP/1000053685</doi><tpages>XX, 159</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4214 |
ispartof | |
issn | 1613-4214 |
language | ger |
recordid | cdi_oapen_doabooks_47328 |
source | DOAB: Directory of Open Access Books |
subjects | Driver Model Dynamic Bayesian Network Dynamisches Bayes'sches NetzDriver Intent Inference Fahrerabsichtserkennung Fahrerverhaltensmodell Risikobewertung Risk Assessment Situation Awareness Situationsbewusstsein T1-995 Technology, Engineering, Agriculture, Industrial processes Technology: general issues |
title | Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oapen&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Fahrerabsichtserkennung%20und%20Risikobewertung%20f%C3%BCr%20warnende%20Fahrerassistenzsysteme&rft.au=Liebner,%20Martin&rft.date=2016&rft.issn=1613-4214&rft.isbn=3731505088&rft.isbn_list=9783731505082&rft_id=info:doi/10.5445/KSP/1000053685&rft_dat=%3Coapen%3E47328%3C/oapen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |