Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme

To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Liebner, Martin
Format: Buch
Sprache:ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Liebner, Martin
description To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.
doi_str_mv 10.5445/KSP/1000053685
format Book
fullrecord <record><control><sourceid>oapen</sourceid><recordid>TN_cdi_oapen_doabooks_47328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>47328</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1606-fd4d8c49d68dbba6e0105ab4f154af62c55a0432d6bdef6e2cefe11d57d4519c3</originalsourceid><addsrcrecordid>eNotjM1KAzEUhQMqWGu3btzMC4zNTXIzmaUUq2LB4s-6JJMbO45mJJlS9Nnc-WJW7Nl8cPjOYewM-AUqhdO7x-UU-C4otcEDdiIrCciRG3PIRqBBlkqAOmaTnF93mjB1jZUeseXcrhMl63LbrIdMqaMYN_Gl2ERfPLS57XpHW0rDXxd-vlOxtSlS9FTslzm3eaD4lT93eKdTdhTsW6bJnmP2PL96mt2Ui_vr29nlomxBc10Gr7xpVO218c5ZTRw4WqcCoLJBiwbRciWF185T0CQaCgTgsfIKoW7kmJ3___b2g-LK99b1fZdXqpLCyF-_ZFKm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</title><source>DOAB: Directory of Open Access Books</source><creator>Liebner, Martin</creator><creatorcontrib>Liebner, Martin</creatorcontrib><description>To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.</description><identifier>ISSN: 1613-4214</identifier><identifier>ISBN: 3731505088</identifier><identifier>ISBN: 9783731505082</identifier><identifier>DOI: 10.5445/KSP/1000053685</identifier><language>ger</language><publisher>KIT Scientific Publishing</publisher><subject>Driver Model ; Dynamic Bayesian Network ; Dynamisches Bayes'sches NetzDriver Intent Inference ; Fahrerabsichtserkennung ; Fahrerverhaltensmodell ; Risikobewertung ; Risk Assessment ; Situation Awareness ; Situationsbewusstsein ; T1-995 ; Technology, Engineering, Agriculture, Industrial processes ; Technology: general issues</subject><creationdate>2016</creationdate><tpages>XX, 159</tpages><format>XX, 159</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782,27902,55285</link.rule.ids></links><search><creatorcontrib>Liebner, Martin</creatorcontrib><title>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</title><description>To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.</description><subject>Driver Model</subject><subject>Dynamic Bayesian Network</subject><subject>Dynamisches Bayes'sches NetzDriver Intent Inference</subject><subject>Fahrerabsichtserkennung</subject><subject>Fahrerverhaltensmodell</subject><subject>Risikobewertung</subject><subject>Risk Assessment</subject><subject>Situation Awareness</subject><subject>Situationsbewusstsein</subject><subject>T1-995</subject><subject>Technology, Engineering, Agriculture, Industrial processes</subject><subject>Technology: general issues</subject><issn>1613-4214</issn><isbn>3731505088</isbn><isbn>9783731505082</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2016</creationdate><recordtype>book</recordtype><sourceid>V1H</sourceid><recordid>eNotjM1KAzEUhQMqWGu3btzMC4zNTXIzmaUUq2LB4s-6JJMbO45mJJlS9Nnc-WJW7Nl8cPjOYewM-AUqhdO7x-UU-C4otcEDdiIrCciRG3PIRqBBlkqAOmaTnF93mjB1jZUeseXcrhMl63LbrIdMqaMYN_Gl2ERfPLS57XpHW0rDXxd-vlOxtSlS9FTslzm3eaD4lT93eKdTdhTsW6bJnmP2PL96mt2Ui_vr29nlomxBc10Gr7xpVO218c5ZTRw4WqcCoLJBiwbRciWF185T0CQaCgTgsfIKoW7kmJ3___b2g-LK99b1fZdXqpLCyF-_ZFKm</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Liebner, Martin</creator><general>KIT Scientific Publishing</general><scope>V1H</scope></search><sort><creationdate>2016</creationdate><title>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</title><author>Liebner, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1606-fd4d8c49d68dbba6e0105ab4f154af62c55a0432d6bdef6e2cefe11d57d4519c3</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>ger</language><creationdate>2016</creationdate><topic>Driver Model</topic><topic>Dynamic Bayesian Network</topic><topic>Dynamisches Bayes'sches NetzDriver Intent Inference</topic><topic>Fahrerabsichtserkennung</topic><topic>Fahrerverhaltensmodell</topic><topic>Risikobewertung</topic><topic>Risk Assessment</topic><topic>Situation Awareness</topic><topic>Situationsbewusstsein</topic><topic>T1-995</topic><topic>Technology, Engineering, Agriculture, Industrial processes</topic><topic>Technology: general issues</topic><toplevel>online_resources</toplevel><creatorcontrib>Liebner, Martin</creatorcontrib><collection>DOAB: Directory of Open Access Books</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebner, Martin</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme</btitle><seriestitle>Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie</seriestitle><date>2016</date><risdate>2016</risdate><issn>1613-4214</issn><isbn>3731505088</isbn><isbn>9783731505082</isbn><abstract>To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that – in principle – is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.</abstract><pub>KIT Scientific Publishing</pub><doi>10.5445/KSP/1000053685</doi><tpages>XX, 159</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4214
ispartof
issn 1613-4214
language ger
recordid cdi_oapen_doabooks_47328
source DOAB: Directory of Open Access Books
subjects Driver Model
Dynamic Bayesian Network
Dynamisches Bayes'sches NetzDriver Intent Inference
Fahrerabsichtserkennung
Fahrerverhaltensmodell
Risikobewertung
Risk Assessment
Situation Awareness
Situationsbewusstsein
T1-995
Technology, Engineering, Agriculture, Industrial processes
Technology: general issues
title Fahrerabsichtserkennung und Risikobewertung für warnende Fahrerassistenzsysteme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oapen&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Fahrerabsichtserkennung%20und%20Risikobewertung%20f%C3%BCr%20warnende%20Fahrerassistenzsysteme&rft.au=Liebner,%20Martin&rft.date=2016&rft.issn=1613-4214&rft.isbn=3731505088&rft.isbn_list=9783731505082&rft_id=info:doi/10.5445/KSP/1000053685&rft_dat=%3Coapen%3E47328%3C/oapen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true