Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis

More than half of the land surface on Earth can burn, and thus, fires are one of the most significant disturbances worldwide. Fires affecting forests are of great interest owing to the impacts they have on multiple provisioning and regulating ecosystem services. In this context, in which large porti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
description More than half of the land surface on Earth can burn, and thus, fires are one of the most significant disturbances worldwide. Fires affecting forests are of great interest owing to the impacts they have on multiple provisioning and regulating ecosystem services. In this context, in which large portions of the Earth are affected by forest fires, remote sensing tools are essential equipment in fire-related assessments at multiple stages, including (I) the characterization of fire drivers and the development of predictive models, (II) the assessment of burned area, (III) the impact of the fire on soil and vegetation, and (IV) the post-fire recovery monitoring. In this reprint, we have compiled 10 research articles addressing these four topics and employing a wide variety of methodologies and remote sensing platforms (MSG, MODIS, Landsat, Sentinel-2 or airborne LiDAR).
doi_str_mv 10.3390/books978-3-0365-8883-4
format Book
fullrecord <record><control><sourceid>oapen</sourceid><recordid>TN_cdi_oapen_doabooks_128614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>128614</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1227-a98f4a4f0dbec98a1b6d02390b501f49bd0d6b54833ff186c24491c15f34aeb83</originalsourceid><addsrcrecordid>eNotj8FKAzEURQMiqLV_IJIfiL7My6TJslRHhYql6rq8TJJhtE1kMhv_3o66uhwuXM5l7FrCDaKFW5fzZ7ELI1AA6loYY1CoE3aBE06EZ2xeygcAIEIttTlnzTYc8hj4a0ilTx3vE2_yEMrIm34I_DmnfszD1FDyfJPLKOJU3NGBusCXifbfpS-X7DTSvoT5f87Ye3P_tnoU65eHp9VyLTpZVQtB1kRFKoJ3obWGpNMeqqO8q0FGZZ0Hr12tjqoxSqPbSikrW1lHVBScwRm7-tvN9BXSzmf6fb2TldFS4Q-ZY0tr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype></control><display><type>book</type><title>Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis</title><source>DOAB: Directory of Open Access Books</source><contributor>Suarez-Seoane, Susana ; Marcos, Elena ; Fernández-García, Víctor ; Calvo, Leonor</contributor><creatorcontrib>Suarez-Seoane, Susana ; Marcos, Elena ; Fernández-García, Víctor ; Calvo, Leonor</creatorcontrib><description>More than half of the land surface on Earth can burn, and thus, fires are one of the most significant disturbances worldwide. Fires affecting forests are of great interest owing to the impacts they have on multiple provisioning and regulating ecosystem services. In this context, in which large portions of the Earth are affected by forest fires, remote sensing tools are essential equipment in fire-related assessments at multiple stages, including (I) the characterization of fire drivers and the development of predictive models, (II) the assessment of burned area, (III) the impact of the fire on soil and vegetation, and (IV) the post-fire recovery monitoring. In this reprint, we have compiled 10 research articles addressing these four topics and employing a wide variety of methodologies and remote sensing platforms (MSG, MODIS, Landsat, Sentinel-2 or airborne LiDAR).</description><identifier>ISBN: 3036588833</identifier><identifier>ISBN: 9783036588827</identifier><identifier>ISBN: 3036588825</identifier><identifier>ISBN: 9783036588834</identifier><identifier>DOI: 10.3390/books978-3-0365-8883-4</identifier><language>eng</language><publisher>Basel: MDPI - Multidisciplinary Digital Publishing Institute</publisher><subject>accuracy ; accuracy assessment ; airborne laser scanning ; biomes ; biophysical drivers ; burn severity ; carbon ; change detection ; climate warming ; continents ; convergence of evidence ; data augmentation ; decision support systems ; disturbance ; Earth Sciences, Geography, Environment, Planning ; elevation ; fire impact ; fire perimeter ; fire severity ; forest landscapes ; fractional vegetation cover ; Geography ; geostationary satellite observations ; image compositing ; initial fire assessment ; land cover type ; land surface temperature ; lidar remote sensing ; live fuel moisture content ; Mediterranean ecosystems ; MESMA ; MODIS ; multilabel classification ; n/a ; ordinary cokriging method ; orthogonal transformation ; peatland ; post-fire forest recovery ; post-fire severity ; PROSAIL ; random forests ; recovery ; Reference, Information and Interdisciplinary subjects ; regression analysis ; Research and information: general ; sampling-based inventory data ; Sentinel-2 ; soil burn severity ; spatial patterns ; spectral indices ; transfer learning ; trends ; vegetation indices ; vegetation phenology ; wildfire ; wildfire fuel loadings ; wildfire regime ; wildfire response</subject><creationdate>2023</creationdate><tpages>256</tpages><format>256</format><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,776,780,782,27902,55285</link.rule.ids></links><search><contributor>Suarez-Seoane, Susana</contributor><contributor>Marcos, Elena</contributor><contributor>Fernández-García, Víctor</contributor><contributor>Calvo, Leonor</contributor><title>Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis</title><description>More than half of the land surface on Earth can burn, and thus, fires are one of the most significant disturbances worldwide. Fires affecting forests are of great interest owing to the impacts they have on multiple provisioning and regulating ecosystem services. In this context, in which large portions of the Earth are affected by forest fires, remote sensing tools are essential equipment in fire-related assessments at multiple stages, including (I) the characterization of fire drivers and the development of predictive models, (II) the assessment of burned area, (III) the impact of the fire on soil and vegetation, and (IV) the post-fire recovery monitoring. In this reprint, we have compiled 10 research articles addressing these four topics and employing a wide variety of methodologies and remote sensing platforms (MSG, MODIS, Landsat, Sentinel-2 or airborne LiDAR).</description><subject>accuracy</subject><subject>accuracy assessment</subject><subject>airborne laser scanning</subject><subject>biomes</subject><subject>biophysical drivers</subject><subject>burn severity</subject><subject>carbon</subject><subject>change detection</subject><subject>climate warming</subject><subject>continents</subject><subject>convergence of evidence</subject><subject>data augmentation</subject><subject>decision support systems</subject><subject>disturbance</subject><subject>Earth Sciences, Geography, Environment, Planning</subject><subject>elevation</subject><subject>fire impact</subject><subject>fire perimeter</subject><subject>fire severity</subject><subject>forest landscapes</subject><subject>fractional vegetation cover</subject><subject>Geography</subject><subject>geostationary satellite observations</subject><subject>image compositing</subject><subject>initial fire assessment</subject><subject>land cover type</subject><subject>land surface temperature</subject><subject>lidar remote sensing</subject><subject>live fuel moisture content</subject><subject>Mediterranean ecosystems</subject><subject>MESMA</subject><subject>MODIS</subject><subject>multilabel classification</subject><subject>n/a</subject><subject>ordinary cokriging method</subject><subject>orthogonal transformation</subject><subject>peatland</subject><subject>post-fire forest recovery</subject><subject>post-fire severity</subject><subject>PROSAIL</subject><subject>random forests</subject><subject>recovery</subject><subject>Reference, Information and Interdisciplinary subjects</subject><subject>regression analysis</subject><subject>Research and information: general</subject><subject>sampling-based inventory data</subject><subject>Sentinel-2</subject><subject>soil burn severity</subject><subject>spatial patterns</subject><subject>spectral indices</subject><subject>transfer learning</subject><subject>trends</subject><subject>vegetation indices</subject><subject>vegetation phenology</subject><subject>wildfire</subject><subject>wildfire fuel loadings</subject><subject>wildfire regime</subject><subject>wildfire response</subject><isbn>3036588833</isbn><isbn>9783036588827</isbn><isbn>3036588825</isbn><isbn>9783036588834</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2023</creationdate><recordtype>book</recordtype><sourceid>V1H</sourceid><recordid>eNotj8FKAzEURQMiqLV_IJIfiL7My6TJslRHhYql6rq8TJJhtE1kMhv_3o66uhwuXM5l7FrCDaKFW5fzZ7ELI1AA6loYY1CoE3aBE06EZ2xeygcAIEIttTlnzTYc8hj4a0ilTx3vE2_yEMrIm34I_DmnfszD1FDyfJPLKOJU3NGBusCXifbfpS-X7DTSvoT5f87Ye3P_tnoU65eHp9VyLTpZVQtB1kRFKoJ3obWGpNMeqqO8q0FGZZ0Hr12tjqoxSqPbSikrW1lHVBScwRm7-tvN9BXSzmf6fb2TldFS4Q-ZY0tr</recordid><startdate>2023</startdate><enddate>2023</enddate><general>MDPI - Multidisciplinary Digital Publishing Institute</general><scope>V1H</scope></search><sort><creationdate>2023</creationdate><title>Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1227-a98f4a4f0dbec98a1b6d02390b501f49bd0d6b54833ff186c24491c15f34aeb83</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2023</creationdate><topic>accuracy</topic><topic>accuracy assessment</topic><topic>airborne laser scanning</topic><topic>biomes</topic><topic>biophysical drivers</topic><topic>burn severity</topic><topic>carbon</topic><topic>change detection</topic><topic>climate warming</topic><topic>continents</topic><topic>convergence of evidence</topic><topic>data augmentation</topic><topic>decision support systems</topic><topic>disturbance</topic><topic>Earth Sciences, Geography, Environment, Planning</topic><topic>elevation</topic><topic>fire impact</topic><topic>fire perimeter</topic><topic>fire severity</topic><topic>forest landscapes</topic><topic>fractional vegetation cover</topic><topic>Geography</topic><topic>geostationary satellite observations</topic><topic>image compositing</topic><topic>initial fire assessment</topic><topic>land cover type</topic><topic>land surface temperature</topic><topic>lidar remote sensing</topic><topic>live fuel moisture content</topic><topic>Mediterranean ecosystems</topic><topic>MESMA</topic><topic>MODIS</topic><topic>multilabel classification</topic><topic>n/a</topic><topic>ordinary cokriging method</topic><topic>orthogonal transformation</topic><topic>peatland</topic><topic>post-fire forest recovery</topic><topic>post-fire severity</topic><topic>PROSAIL</topic><topic>random forests</topic><topic>recovery</topic><topic>Reference, Information and Interdisciplinary subjects</topic><topic>regression analysis</topic><topic>Research and information: general</topic><topic>sampling-based inventory data</topic><topic>Sentinel-2</topic><topic>soil burn severity</topic><topic>spatial patterns</topic><topic>spectral indices</topic><topic>transfer learning</topic><topic>trends</topic><topic>vegetation indices</topic><topic>vegetation phenology</topic><topic>wildfire</topic><topic>wildfire fuel loadings</topic><topic>wildfire regime</topic><topic>wildfire response</topic><toplevel>online_resources</toplevel><collection>DOAB: Directory of Open Access Books</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suarez-Seoane, Susana</au><au>Marcos, Elena</au><au>Fernández-García, Víctor</au><au>Calvo, Leonor</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis</btitle><date>2023</date><risdate>2023</risdate><isbn>3036588833</isbn><isbn>9783036588827</isbn><isbn>3036588825</isbn><isbn>9783036588834</isbn><abstract>More than half of the land surface on Earth can burn, and thus, fires are one of the most significant disturbances worldwide. Fires affecting forests are of great interest owing to the impacts they have on multiple provisioning and regulating ecosystem services. In this context, in which large portions of the Earth are affected by forest fires, remote sensing tools are essential equipment in fire-related assessments at multiple stages, including (I) the characterization of fire drivers and the development of predictive models, (II) the assessment of burned area, (III) the impact of the fire on soil and vegetation, and (IV) the post-fire recovery monitoring. In this reprint, we have compiled 10 research articles addressing these four topics and employing a wide variety of methodologies and remote sensing platforms (MSG, MODIS, Landsat, Sentinel-2 or airborne LiDAR).</abstract><cop>Basel</cop><pub>MDPI - Multidisciplinary Digital Publishing Institute</pub><doi>10.3390/books978-3-0365-8883-4</doi><tpages>256</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISBN: 3036588833
ispartof
issn
language eng
recordid cdi_oapen_doabooks_128614
source DOAB: Directory of Open Access Books
subjects accuracy
accuracy assessment
airborne laser scanning
biomes
biophysical drivers
burn severity
carbon
change detection
climate warming
continents
convergence of evidence
data augmentation
decision support systems
disturbance
Earth Sciences, Geography, Environment, Planning
elevation
fire impact
fire perimeter
fire severity
forest landscapes
fractional vegetation cover
Geography
geostationary satellite observations
image compositing
initial fire assessment
land cover type
land surface temperature
lidar remote sensing
live fuel moisture content
Mediterranean ecosystems
MESMA
MODIS
multilabel classification
n/a
ordinary cokriging method
orthogonal transformation
peatland
post-fire forest recovery
post-fire severity
PROSAIL
random forests
recovery
Reference, Information and Interdisciplinary subjects
regression analysis
Research and information: general
sampling-based inventory data
Sentinel-2
soil burn severity
spatial patterns
spectral indices
transfer learning
trends
vegetation indices
vegetation phenology
wildfire
wildfire fuel loadings
wildfire regime
wildfire response
title Remote Sensing in Forest Fire Monitoring and Post-fire Damage Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oapen&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Remote%20Sensing%20in%20Forest%20Fire%20Monitoring%20and%20Post-fire%20Damage%20Analysis&rft.au=Suarez-Seoane,%20Susana&rft.date=2023&rft.isbn=3036588833&rft.isbn_list=9783036588827&rft.isbn_list=3036588825&rft.isbn_list=9783036588834&rft_id=info:doi/10.3390/books978-3-0365-8883-4&rft_dat=%3Coapen%3E128614%3C/oapen%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true