Analysis of temperature-dependent abnormal bursting patterns of neurons in Aplysia

Temperature affects the firing pattern and electrical activity of neurons in animals, eliciting diverse responses depending on neuronal cell type. However, the mechanisms underlying such diverse responses are not well understood. In the present study, we performed in vitro recording of abdominal gan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Korean journal of physiology & pharmacology 2020, 24(4), , pp.349-362
Hauptverfasser: Hyun, Nam Gyu, Hyun, Kwangho, Oh, Saecheol, Lee, Kyungmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature affects the firing pattern and electrical activity of neurons in animals, eliciting diverse responses depending on neuronal cell type. However, the mechanisms underlying such diverse responses are not well understood. In the present study, we performed in vitro recording of abdominal ganglia cells of Aplysia juliana, and analyzed their burst firing patterns. We identified atypical bursting patterns dependent on temperature that were totally different from classical bursting patterns observed in R15 neurons of A. juliana. We classified these abnormal bursting patterns into type 1 and type 2; type 1 abnormal single bursts are composed of two kinds of spikes with a long interspike interval (ISI) followed by short ISI regular firing, while type 2 abnormal single bursts are composed of complex multiplets. To investigate the mechanism underlying the temperature dependence of abnormal bursting, we employed simulations using a modified Plant model and determined that the temperature dependence of type 2 abnormal bursting is related to temperature-dependent scaling factors and activation or inactivation of potassium or sodium channels.
ISSN:1226-4512
2093-3827
DOI:10.4196/kjpp.2020.24.4.349