Impact of the human body in wireless propagation of medical implants for tumor detection
This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recom...
Gespeichert in:
Veröffentlicht in: | Inteonet jeongbo hakoe nonmunji = Journal of Korean Society for Internet Information 2020, 21(2), , pp.19-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recommendations and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range of 300 MHz to 100 GHz. We conduct primary estimations on 915 MHz and 2.4 GHz operating frequencies. The path loss presented in most short-range wireless implant devices does not take into account the human body as a channel itself, which causes additional losses to wireless designs. In this paper, we examine the propagation through the human body, including losses taken from bones, muscles, fat, and clothes, which results in a more accurate characterization and estimation of the channel. The results obtained from our simulation indicates a variation of the return loss of the spiral antenna when a tumor is located near the implant. This knowledge can be applied in medical detection, and monitoring of early tumors, by analyzing the electromagnetic field behavior of the implant. The tumor was modeled under CST Microwave Studio, using Wisconsin Diagnosis Breast Cancer Dataset. Features like the radius, texture, perimeter, area, and smoothness of the tumor are included along with their label data to determine whether the external shape has malignant or benign physiognomies. An explanation of the feasibility of the system deployment and technical recommendations to avoid interference is also described. KCI Citation Count: 0 |
---|---|
ISSN: | 1598-0170 2287-1136 |
DOI: | 10.7472/jksii.2020.21.2.19 |