Ionic liquid induced supramolecular self-assembly of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) thin films with enhanced conductivity and tunable nanoporosity
We present a facile strategy, for the first time as the best of our known, to prepare high conducting poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT:PSS) film with a novel nanoporous morphology directly from a commercial PEDOT:PSS dispersion. Both conducting properties and surface...
Gespeichert in:
Veröffentlicht in: | Macromolecular research 2013, 21(4), , pp.456-461 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a facile strategy, for the first time as the best of our known, to prepare high conducting poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT:PSS) film with a novel nanoporous morphology directly from a commercial PEDOT:PSS dispersion. Both conducting properties and surface morphology of PEDOT:PSS film can be systematically tunable by simply controlling addition of an ionic liquid, 1,3-dihydroxy-2-methylimidazolium bis(trifluoromethylsulfonyl)-imide (DHIL). The electrical conductivity increases from 0.07 for pristine PEDOT:PSS to 55 S cm
−1
after addition of 2 wt% DHIL, with no necessary of any further heat treatment, which is around 800 times increase in the electrical conductivity. On the other hand, the discrete compact PEDOT:PSS film is gradually transformed into the nanoporous film with addition of DHIL. It is considered that such size-tunable porous PEDOT:PSS films with high surface area as well as high conductivity combining solution-processibility show great potential in applications that require high interfacial area, such as flexible electronic components, nextgeneration catalytic, and separation supports. |
---|---|
ISSN: | 1598-5032 2092-7673 |
DOI: | 10.1007/s13233-013-1087-5 |