WEAKLY TRIPOTENT RINGS

We study the class of rings R with the property that for $x{\in}R$ at least one of the elements x and 1 + x are tripotent. We prove that a commutative ring has this property if and only if it is a subring of a direct product $R_0{\times}R_1{\times}R_2$ such that $R_0/J(R_0){\cong}{\mathbb{z}}_2$, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2018, 55(4), , pp.1179-1187
Hauptverfasser: Breaz, Simion, Cimpean, Andrada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the class of rings R with the property that for $x{\in}R$ at least one of the elements x and 1 + x are tripotent. We prove that a commutative ring has this property if and only if it is a subring of a direct product $R_0{\times}R_1{\times}R_2$ such that $R_0/J(R_0){\cong}{\mathbb{z}}_2$, for every $x{\in}J(R_0)$ we have $x^2=2x$, $R_1$ is a Boolean ring, and $R_3$ is a subring of a direct product of copies of ${\mathbb{z}}_3$.
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b170656