WEAKLY TRIPOTENT RINGS
We study the class of rings R with the property that for $x{\in}R$ at least one of the elements x and 1 + x are tripotent. We prove that a commutative ring has this property if and only if it is a subring of a direct product $R_0{\times}R_1{\times}R_2$ such that $R_0/J(R_0){\cong}{\mathbb{z}}_2$, fo...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2018, 55(4), , pp.1179-1187 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the class of rings R with the property that for $x{\in}R$ at least one of the elements x and 1 + x are tripotent. We prove that a commutative ring has this property if and only if it is a subring of a direct product $R_0{\times}R_1{\times}R_2$ such that $R_0/J(R_0){\cong}{\mathbb{z}}_2$, for every $x{\in}J(R_0)$ we have $x^2=2x$, $R_1$ is a Boolean ring, and $R_3$ is a subring of a direct product of copies of ${\mathbb{z}}_3$. |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b170656 |