감마 일반화 선형 모형에서의 가능도비 검정과 F-검정 비교연구

감마 일반화 선형모형은 음이 아니며 치우침이 있는 반응변수에 유용한 모형으로 알려져 있다. 그러나 포아송 분포 또는 이항 분포에 기반한 일반화 선형모형에 비해 적은 관심을 받아왔다. 특히, 회귀계수의 유의성 검정에 대해서는 연구가 면밀히 되어 있지 않다. 본 논문에서는 감마 일반화 선형 모형의 검정에 대해 다양한 통계량들을 알아보고 수치 연구를 통해 그들의 성능을 비교한다. 수치 실험의 결과 부분 이탈도 검정 방법의 문제점이 나타났으며, 가능도비 검정 방법과 F-검정 방법이 좋은 성능을 보임을 확인하였다. Gamma generali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ŭngyong tʻonggye yŏnʼgu 2018, 31(4), , pp.475-484
Hauptverfasser: 조성일, Seongil Jo, 한정섭, Jeongseop Han, 이우주, Woojoo Lee
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:감마 일반화 선형모형은 음이 아니며 치우침이 있는 반응변수에 유용한 모형으로 알려져 있다. 그러나 포아송 분포 또는 이항 분포에 기반한 일반화 선형모형에 비해 적은 관심을 받아왔다. 특히, 회귀계수의 유의성 검정에 대해서는 연구가 면밀히 되어 있지 않다. 본 논문에서는 감마 일반화 선형 모형의 검정에 대해 다양한 통계량들을 알아보고 수치 연구를 통해 그들의 성능을 비교한다. 수치 실험의 결과 부분 이탈도 검정 방법의 문제점이 나타났으며, 가능도비 검정 방법과 F-검정 방법이 좋은 성능을 보임을 확인하였다. Gamma generalized linear models are useful for non-negative and skewed responses. However, these models have received less attention than Poisson and binomial generalized linear models. In particular, hypothesis testing for the significance of regression coefficients has not been thoroughly studied. In this paper we assess the performance of various test statistics for gamma generalized linear models based on numerical studies. Our results show that the likelihood ratio test and F-type test are generally recommended and that the partial deviance test should be avoided in practice.
ISSN:1225-066X
2383-5818