Effects of abiotic stressors on kelp early life-history stages

Kelp forests and the many vital ecosystem services they provide are threatened as the severity of climate change and other anthropogenic stressors continues to mount. Particularly in the North Pacific, sea surface temperature is warming and glacial melt is decreasing salinity. This study explored th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algae (Korean Phycological Society) 2017, 32(3), , pp.223-233
Hauptverfasser: Lind, Alyssa C., Konar, Brenda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kelp forests and the many vital ecosystem services they provide are threatened as the severity of climate change and other anthropogenic stressors continues to mount. Particularly in the North Pacific, sea surface temperature is warming and glacial melt is decreasing salinity. This study explored the resiliency of early life-history stages of these foundation species through a factorial laboratory experiment. The effects of rising sea surface temperature under low salinity conditions on kelp spore settlement and initial gametophyte growth in Eualaria fistulosa, Nereocystis luetkeana, and Saccharina latissima were investigated. Decreased settlement and growth were observed in these species at elevated temperatures and at low salinity. Eualaria fistulosa spores and gametophytes were the most negatively impacted, compared to the more widely distributed N. luetkeana and S. latissima. These results suggest that N. luetkeana and S. latissima could potentially outperform E. fistulosa under projected conditions. However, despite decreased performance among all species, our findings indicate that these species are largely resilient to temperature changes when exposed to a low salinity, even when the temperature changes are immediate and extreme. By exploring how early life-history stages of several key kelp species are impacted by dual stressors, this research enhances our understanding of how kelp forests will respond to projected and extreme changes in temperature when already stressed by low salinity.
ISSN:1226-2617
2093-0860
DOI:10.4490/algae.2017.32.8.7