THE PROXIMAL POINT ALGORITHM IN UNIFORMLY CONVEX METRIC SPACES

We introduce the proximal point algorithm in a $p$-uniformly convex metric space. We first introduce the notion of $p$-resolvent map in a $p$-uniformly convex metric space as a generalization of the Moreau-Yosida resolvent in a CAT($0$)-space, and then we secondly prove the convergence of the proxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2016, 31(4), , pp.845-855
Hauptverfasser: Choi, Byoung Jin, Ji, Un Cig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the proximal point algorithm in a $p$-uniformly convex metric space. We first introduce the notion of $p$-resolvent map in a $p$-uniformly convex metric space as a generalization of the Moreau-Yosida resolvent in a CAT($0$)-space, and then we secondly prove the convergence of the proximal point algorithm by the $p$-resolvent map in a $p$-uniformly convex metric space. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c150114