Effect of a Si-nanocrystal Layer on the Vertical Growth of Multiwalled Carbon Nanotubes by Using Chemical Vapor Deposition
We report a synthesis approach using a Si-nanocrystal (NC) layer that is formed by annealing a Si-rich oxide with different oxygen contents (stoichiometry, x) for growing vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs). VA-MWCNTs with a largest length and diameter of about 190 µm and 20...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2010, 57(6), , pp.1408-1411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a synthesis approach using a Si-nanocrystal (NC) layer that is formed by annealing a Si-rich oxide with different oxygen contents (stoichiometry, x) for growing vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs). VA-MWCNTs with a largest length and diameter of about 190 µm and 20 nm, respectively, were grown at x = 1.6. The atomic-resolved transmission electron microscopy image of the tube wall at x = 1.6 revealed almost-straight and well-separated graphitic sheets without defects, possibly resulting from the highest-quality Si NCs at x = 1.6. Active iron catalyst particles were formed on the Si-NC layer, resulting in the formation of highlyaligned MWCNTs. Possible mechanisms are described to explain the experimental results. We report a synthesis approach using a Si-nanocrystal (NC) layer that is formed by annealing a Si-rich oxide with different oxygen contents (stoichiometry, x) for growing vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs). VA-MWCNTs with a largest length and diameter of about 190 µm and 20 nm, respectively, were grown at x = 1.6. The atomic-resolved transmission electron microscopy image of the tube wall at x = 1.6 revealed almost-straight and well-separated graphitic sheets without defects, possibly resulting from the highest-quality Si NCs at x = 1.6. Active iron catalyst particles were formed on the Si-NC layer, resulting in the formation of highlyaligned MWCNTs. Possible mechanisms are described to explain the experimental results. KCI Citation Count: 1 |
---|---|
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.57.1408 |