Fiber-optic hydrogen sensor based on polarization-diversity loop interferometer
In this study, we have demonstrated a fiber-optic hydrogen sensor using a polarization-diversity loop interferometer composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness was ∼400 nm. One dip in the output interf...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2013, 62(4), , pp.575-580 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we have demonstrated a fiber-optic hydrogen sensor using a polarization-diversity loop interferometer composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness was ∼400 nm. One dip in the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with increasing hydrogen concentration. At a hydrogen concentration of 4%, the sensing indicator showed a wavelength shift of ∼2.48 nm. The response time of the proposed sensor was measured as 10–12.5 s and did not show significant dependence on the hydrogen concentration except for a hydrogen concentration of 4%. In particular, compared with other hydrogen sensors based on side-polished fibers or fiber gratings, the proposed sensor is much more durable because UV illumination or physical/chemical etching process is not necessary for the optical fiber and thus is highly resistant to external stress applied on a transverse axis of an optical fiber. |
---|---|
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.62.575 |