DRL-empowered joint batch size and weighted aggregation adjustment mechanism for federated learning on non-IID data
To address the accuracy degradation as well as prolonged convergence time due to the inherent data heterogeneity among end-devices in federated learning (FL), we introduce the joint batch size and weighted aggregation adjustment problem, which is non-convex problem. To adjust optimal hyperparameters...
Gespeichert in:
Veröffentlicht in: | ICT express 2024, 10(4), , pp.863-870 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To address the accuracy degradation as well as prolonged convergence time due to the inherent data heterogeneity among end-devices in federated learning (FL), we introduce the joint batch size and weighted aggregation adjustment problem, which is non-convex problem. To adjust optimal hyperparameters, we develop deep reinforcement learning (DRL) to empower a mechanism known as Batch size and Weighted aggregation Adjustment (BWA). Experimental evaluation demonstrates that BWA not only outperforms methods optimized solely from either a local training or server perspective but also achieves higher accuracy, with an increase of up to 5.53% compared to FedAvg, and additionally accelerates convergence speeds. |
---|---|
ISSN: | 2405-9595 2405-9595 |
DOI: | 10.1016/j.icte.2024.04.011 |