질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과

BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hanguk hwangyeong nonghak hoeji 2022, 41(4), , pp.230-235
Hauptverfasser: 홍성창, Sung-chang Hong, 김민욱, Min-wook Kim, 김진호, Jin-ho Kim
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol- blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.
ISSN:1225-3537
2233-4173
DOI:10.5338/KJEA.2022.41.4.28