Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages
Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigate...
Gespeichert in:
Veröffentlicht in: | Mycobiology 2015, 43(3), , pp.319-326 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-alpha and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor kB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo. |
---|---|
ISSN: | 1229-8093 2092-9323 |
DOI: | 10.5941/MYCO.2015.43.3.319 |