Knots in homology lens spaces determined by their complements

In this paper, we consider the knot complement problem for not null-homologous knots in homology lens spaces. Let $M$ be a homology lens space with $H_1(M; \mathbb{Z}) \cong \mathbb{Z}_p$ and $K$ a not null-homologous knot in $M$. We show that, $K$ is determined by its complement if $M$ is non-hyper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2022, 59(4), , pp.869-877
Hauptverfasser: Kazuhiro Ichihara, Toshio Saito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the knot complement problem for not null-homologous knots in homology lens spaces. Let $M$ be a homology lens space with $H_1(M; \mathbb{Z}) \cong \mathbb{Z}_p$ and $K$ a not null-homologous knot in $M$. We show that, $K$ is determined by its complement if $M$ is non-hyperbolic, $K$ is hyperbolic, and $p$ is a prime greater than 7, or, if $M$ is actually a lens space $L(p,q)$ and $K$ represents a generator of $H_1(L(p,q))$. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b210503