New method to determine proper strain rate for constant rate-of-strain consolidation tests

The development of a new semiempirical method to predict the proper strain rate for constant rate-of-strain (CRS) consolidation tests is described herein. The validity of the proposed method is analyzed using experimental results from CRS and incremental loading tests on four types of soil: Lake Bon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian geotechnical journal 2012-01, Vol.49 (1), p.18-26
Hauptverfasser: TOLGA OZER, A, LAWTON, Evert C, BARTLETT, Steven F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 18
container_title Canadian geotechnical journal
container_volume 49
creator TOLGA OZER, A
LAWTON, Evert C
BARTLETT, Steven F
description The development of a new semiempirical method to predict the proper strain rate for constant rate-of-strain (CRS) consolidation tests is described herein. The validity of the proposed method is analyzed using experimental results from CRS and incremental loading tests on four types of soil: Lake Bonneville clay, Massena clay, kaolinite, and montmorillonite. It is found that the maximum allowable strain rate depends on the initial void ratio of the soil and thus is related to the compressibility of the soil. The effect of the strain rate on the distribution of the pore pressure within the sample is investigated by comparing values of effective vertical stress calculated using a linear equation published by Wissa et al. in 1971 with values of effective stress at the base of the specimen determined from measured values of pore pressure. Overall, the proposed method predicts the maximum allowable strain rate very well for three of the four soils and moderately well for the other soil.
doi_str_mv 10.1139/t11-086
format Article
fullrecord <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_nrcresearch_primary_10_1139_t11_086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A277520071</galeid><sourcerecordid>A277520071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-14f552a72cf345f4e2e9c668c71361a1d00c1d0537cdb1c30a6bbb85721ac56f3</originalsourceid><addsrcrecordid>eNqV0ltrFDEUAOAgCq5b8S-Eiq0VpuYyycw8luKlUCp4efElZDMn25SZZJpk0f57s91F3LIKJpAJh29OTsJB6AUlp5Ty7m2mtCKtfIRmlJG2koSSx2hGSNlz2dRP0bOUbgihdc3YDH2_gh94hHwdepwD7iFDHJ0HPMUwQcQpR-08jjoDtiFiE3zK2uf7SBVstQXreBhcr7MLHmdIOR2gJ1YPCZ5vv3P07f27r-cfq8tPHy7Ozy4rI1qaK1pbIZhumLG8FrYGBp2RsjUN5ZJq2hNiyiJ4Y_oFNZxouVgsWtEwqo2Qls_R603eUvLtqpysRpcMDIP2EFZJUcJbJgnhstDDB_QmrKIv1amOsq4uoy3o5QYt9QDKeRvKFc06pzpjTSMYIaW0Oar2qCV4iHoIHqwr4R1_uMebyd2qP9HpHlRmD6Mze7Oe7PxQTIafealXKamLL5__w17t2uONNTGkFMGqKbpRx7vymmrdZqq0mSptVuSr7ZPqZPRgo_bGpd-cCSmF6FhxbzbORxMhgY7m-h9Jj_6Ot0hNveW_ANMM558</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912944448</pqid></control><display><type>article</type><title>New method to determine proper strain rate for constant rate-of-strain consolidation tests</title><source>NRC Research Press</source><source>Alma/SFX Local Collection</source><creator>TOLGA OZER, A ; LAWTON, Evert C ; BARTLETT, Steven F</creator><creatorcontrib>TOLGA OZER, A ; LAWTON, Evert C ; BARTLETT, Steven F</creatorcontrib><description>The development of a new semiempirical method to predict the proper strain rate for constant rate-of-strain (CRS) consolidation tests is described herein. The validity of the proposed method is analyzed using experimental results from CRS and incremental loading tests on four types of soil: Lake Bonneville clay, Massena clay, kaolinite, and montmorillonite. It is found that the maximum allowable strain rate depends on the initial void ratio of the soil and thus is related to the compressibility of the soil. The effect of the strain rate on the distribution of the pore pressure within the sample is investigated by comparing values of effective vertical stress calculated using a linear equation published by Wissa et al. in 1971 with values of effective stress at the base of the specimen determined from measured values of pore pressure. Overall, the proposed method predicts the maximum allowable strain rate very well for three of the four soils and moderately well for the other soil.</description><identifier>ISSN: 0008-3674</identifier><identifier>EISSN: 1208-6010</identifier><identifier>DOI: 10.1139/t11-086</identifier><identifier>CODEN: CGJOAH</identifier><language>eng</language><publisher>Ottawa, ON: NRC Research Press</publisher><subject>argiles du Lac Bonneville ; Clay ; Clay (material) ; Compressibility ; Consolidation ; constant rate-of-strain (CRS) consolidation test ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Engineering geology ; essai de consolidation à taux de déformation constant (TDC) ; Exact sciences and technology ; Geotechnology ; Kaolinite ; Lake Bonneville clays ; Measurement ; Mechanical properties ; Methods ; Montmorillonite ; Pore pressure ; Porosity ; Soil (material) ; Soil stabilization ; Soil types ; Soils ; Strain rate ; Strains and stresses ; Stress measurement ; Stress relaxation (Materials) ; Stress relieving (Materials) ; Stresses ; taux de déformation ; Validity ; Void ratio</subject><ispartof>Canadian geotechnical journal, 2012-01, Vol.49 (1), p.18-26</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 NRC Research Press</rights><rights>Copyright National Research Council of Canada Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-14f552a72cf345f4e2e9c668c71361a1d00c1d0537cdb1c30a6bbb85721ac56f3</citedby><cites>FETCH-LOGICAL-c581t-14f552a72cf345f4e2e9c668c71361a1d00c1d0537cdb1c30a6bbb85721ac56f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/t11-086$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/t11-086$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>315,781,785,2933,4025,27928,27929,27930,64433,65239</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25665592$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TOLGA OZER, A</creatorcontrib><creatorcontrib>LAWTON, Evert C</creatorcontrib><creatorcontrib>BARTLETT, Steven F</creatorcontrib><title>New method to determine proper strain rate for constant rate-of-strain consolidation tests</title><title>Canadian geotechnical journal</title><description>The development of a new semiempirical method to predict the proper strain rate for constant rate-of-strain (CRS) consolidation tests is described herein. The validity of the proposed method is analyzed using experimental results from CRS and incremental loading tests on four types of soil: Lake Bonneville clay, Massena clay, kaolinite, and montmorillonite. It is found that the maximum allowable strain rate depends on the initial void ratio of the soil and thus is related to the compressibility of the soil. The effect of the strain rate on the distribution of the pore pressure within the sample is investigated by comparing values of effective vertical stress calculated using a linear equation published by Wissa et al. in 1971 with values of effective stress at the base of the specimen determined from measured values of pore pressure. Overall, the proposed method predicts the maximum allowable strain rate very well for three of the four soils and moderately well for the other soil.</description><subject>argiles du Lac Bonneville</subject><subject>Clay</subject><subject>Clay (material)</subject><subject>Compressibility</subject><subject>Consolidation</subject><subject>constant rate-of-strain (CRS) consolidation test</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Engineering geology</subject><subject>essai de consolidation à taux de déformation constant (TDC)</subject><subject>Exact sciences and technology</subject><subject>Geotechnology</subject><subject>Kaolinite</subject><subject>Lake Bonneville clays</subject><subject>Measurement</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Montmorillonite</subject><subject>Pore pressure</subject><subject>Porosity</subject><subject>Soil (material)</subject><subject>Soil stabilization</subject><subject>Soil types</subject><subject>Soils</subject><subject>Strain rate</subject><subject>Strains and stresses</subject><subject>Stress measurement</subject><subject>Stress relaxation (Materials)</subject><subject>Stress relieving (Materials)</subject><subject>Stresses</subject><subject>taux de déformation</subject><subject>Validity</subject><subject>Void ratio</subject><issn>0008-3674</issn><issn>1208-6010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqV0ltrFDEUAOAgCq5b8S-Eiq0VpuYyycw8luKlUCp4efElZDMn25SZZJpk0f57s91F3LIKJpAJh29OTsJB6AUlp5Ty7m2mtCKtfIRmlJG2koSSx2hGSNlz2dRP0bOUbgihdc3YDH2_gh94hHwdepwD7iFDHJ0HPMUwQcQpR-08jjoDtiFiE3zK2uf7SBVstQXreBhcr7MLHmdIOR2gJ1YPCZ5vv3P07f27r-cfq8tPHy7Ozy4rI1qaK1pbIZhumLG8FrYGBp2RsjUN5ZJq2hNiyiJ4Y_oFNZxouVgsWtEwqo2Qls_R603eUvLtqpysRpcMDIP2EFZJUcJbJgnhstDDB_QmrKIv1amOsq4uoy3o5QYt9QDKeRvKFc06pzpjTSMYIaW0Oar2qCV4iHoIHqwr4R1_uMebyd2qP9HpHlRmD6Mze7Oe7PxQTIafealXKamLL5__w17t2uONNTGkFMGqKbpRx7vymmrdZqq0mSptVuSr7ZPqZPRgo_bGpd-cCSmF6FhxbzbORxMhgY7m-h9Jj_6Ot0hNveW_ANMM558</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>TOLGA OZER, A</creator><creator>LAWTON, Evert C</creator><creator>BARTLETT, Steven F</creator><general>NRC Research Press</general><general>National Research Council of Canada</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>201201</creationdate><title>New method to determine proper strain rate for constant rate-of-strain consolidation tests</title><author>TOLGA OZER, A ; LAWTON, Evert C ; BARTLETT, Steven F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-14f552a72cf345f4e2e9c668c71361a1d00c1d0537cdb1c30a6bbb85721ac56f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>argiles du Lac Bonneville</topic><topic>Clay</topic><topic>Clay (material)</topic><topic>Compressibility</topic><topic>Consolidation</topic><topic>constant rate-of-strain (CRS) consolidation test</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Engineering geology</topic><topic>essai de consolidation à taux de déformation constant (TDC)</topic><topic>Exact sciences and technology</topic><topic>Geotechnology</topic><topic>Kaolinite</topic><topic>Lake Bonneville clays</topic><topic>Measurement</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Montmorillonite</topic><topic>Pore pressure</topic><topic>Porosity</topic><topic>Soil (material)</topic><topic>Soil stabilization</topic><topic>Soil types</topic><topic>Soils</topic><topic>Strain rate</topic><topic>Strains and stresses</topic><topic>Stress measurement</topic><topic>Stress relaxation (Materials)</topic><topic>Stress relieving (Materials)</topic><topic>Stresses</topic><topic>taux de déformation</topic><topic>Validity</topic><topic>Void ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TOLGA OZER, A</creatorcontrib><creatorcontrib>LAWTON, Evert C</creatorcontrib><creatorcontrib>BARTLETT, Steven F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Canadian geotechnical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOLGA OZER, A</au><au>LAWTON, Evert C</au><au>BARTLETT, Steven F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New method to determine proper strain rate for constant rate-of-strain consolidation tests</atitle><jtitle>Canadian geotechnical journal</jtitle><date>2012-01</date><risdate>2012</risdate><volume>49</volume><issue>1</issue><spage>18</spage><epage>26</epage><pages>18-26</pages><issn>0008-3674</issn><eissn>1208-6010</eissn><coden>CGJOAH</coden><abstract>The development of a new semiempirical method to predict the proper strain rate for constant rate-of-strain (CRS) consolidation tests is described herein. The validity of the proposed method is analyzed using experimental results from CRS and incremental loading tests on four types of soil: Lake Bonneville clay, Massena clay, kaolinite, and montmorillonite. It is found that the maximum allowable strain rate depends on the initial void ratio of the soil and thus is related to the compressibility of the soil. The effect of the strain rate on the distribution of the pore pressure within the sample is investigated by comparing values of effective vertical stress calculated using a linear equation published by Wissa et al. in 1971 with values of effective stress at the base of the specimen determined from measured values of pore pressure. Overall, the proposed method predicts the maximum allowable strain rate very well for three of the four soils and moderately well for the other soil.</abstract><cop>Ottawa, ON</cop><pub>NRC Research Press</pub><doi>10.1139/t11-086</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-3674
ispartof Canadian geotechnical journal, 2012-01, Vol.49 (1), p.18-26
issn 0008-3674
1208-6010
language eng
recordid cdi_nrcresearch_primary_10_1139_t11_086
source NRC Research Press; Alma/SFX Local Collection
subjects argiles du Lac Bonneville
Clay
Clay (material)
Compressibility
Consolidation
constant rate-of-strain (CRS) consolidation test
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Engineering geology
essai de consolidation à taux de déformation constant (TDC)
Exact sciences and technology
Geotechnology
Kaolinite
Lake Bonneville clays
Measurement
Mechanical properties
Methods
Montmorillonite
Pore pressure
Porosity
Soil (material)
Soil stabilization
Soil types
Soils
Strain rate
Strains and stresses
Stress measurement
Stress relaxation (Materials)
Stress relieving (Materials)
Stresses
taux de déformation
Validity
Void ratio
title New method to determine proper strain rate for constant rate-of-strain consolidation tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20method%20to%20determine%20proper%20strain%20rate%20for%20constant%20rate-of-strain%20consolidation%20tests&rft.jtitle=Canadian%20geotechnical%20journal&rft.au=TOLGA%20OZER,%20A&rft.date=2012-01&rft.volume=49&rft.issue=1&rft.spage=18&rft.epage=26&rft.pages=18-26&rft.issn=0008-3674&rft.eissn=1208-6010&rft.coden=CGJOAH&rft_id=info:doi/10.1139/t11-086&rft_dat=%3Cgale_nrcre%3EA277520071%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912944448&rft_id=info:pmid/&rft_galeid=A277520071&rfr_iscdi=true