Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena
The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene...
Gespeichert in:
Veröffentlicht in: | Genome 2003-02, Vol.46 (1), p.119-127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 119 |
container_title | Genome |
container_volume | 46 |
creator | Cheng, D.W Armstrong, K.C Drouin, G McElroy, A Fedak, G Molnar, S.D |
description | The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana andAvena murphyi and several sequences from different accessions of A.sativa; and (iii) A. murphyi and sequences from A. sativa andAvena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.Key words: phylogeny, genome evolution, speciation, oat. |
doi_str_mv | 10.1139/g02-111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_nrcre</sourceid><recordid>TN_cdi_nrcresearch_primary_10_1139_g02_111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18667271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-2cf87c80c0d226906531bd333656bf6815006c2ceca7fc4013cd858af50504c23</originalsourceid><addsrcrecordid>eNqF0d2O1CAUB_DGaNzZ1fgGSrxYP2KVA4XSy83Gj00m8cLda8LQwww7nVKhNfou-7AytomJiXrFgfz4n8ApiidA3wLw5t2WshIA7hUrqBQtOWdwv1hRxaFkdSNPitOUbikFyht4WJwAk7JRtFoVd1cpdGb0oSemb4lvsR-983Y-Co5cRz96iwaJ3cVwCCkckACJaHEYQyw7v0ey971JSLbYYyIv13EP9BVxmZPWD13w7Rsy4hjNUh877fD7vCVpQOvzvdxs3P0KmRK5-Ia9eVQ8cKZL-HhZz4qbD--vLz-V688fry4v1qWtmBhLZp2qraKWtozJhkrBYdNyzqWQGycVCEqlZRatqZ2tKHDbKqGME1TQyjJ-VpzPuUMMXydMoz74ZLHrTI9hSrrmIJqqrv4LQUlZsxoyfP4HvA1T7PMjNGNUABMVz-jFjGwMKUV0eoj-YOIPDVQfx6rzWHNxjHu6xE2bA7a_3TLHDF7PoI82YkIT7e4faed_xwvSQ-syfDZDZ4I22-iTvvnC8v9RAMYUE_wnOsjBHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220512543</pqid></control><display><type>article</type><title>Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena</title><source>NRC Research Press</source><source>MEDLINE</source><creator>Cheng, D.W ; Armstrong, K.C ; Drouin, G ; McElroy, A ; Fedak, G ; Molnar, S.D</creator><creatorcontrib>Cheng, D.W ; Armstrong, K.C ; Drouin, G ; McElroy, A ; Fedak, G ; Molnar, S.D</creatorcontrib><description>The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana andAvena murphyi and several sequences from different accessions of A.sativa; and (iii) A. murphyi and sequences from A. sativa andAvena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.Key words: phylogeny, genome evolution, speciation, oat.</description><identifier>ISSN: 0831-2796</identifier><identifier>EISSN: 1480-3321</identifier><identifier>DOI: 10.1139/g02-111</identifier><identifier>PMID: 12669804</identifier><identifier>CODEN: GENOE3</identifier><language>eng</language><publisher>Ottawa, Canada: NRC Research Press</publisher><subject>Avena (Poaceae) ; Avena - enzymology ; Avena - genetics ; Avena sativa ; Barley ; Deoxyribonucleic acid ; Diploidy ; DNA ; DNA Primers ; Flowers & plants ; genes ; Genetics ; genomics ; hexaploidy ; Hordeum - genetics ; molecular sequence data ; nucleotide sequences ; Oats ; Oryza - genetics ; Phylogeny ; Plant Proteins ; Polyploidy ; protein kinases ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases - genetics ; receptors ; sequence alignment ; Sequence Analysis, DNA ; speciation ; tetraploidy ; Triticum - genetics ; Wheat</subject><ispartof>Genome, 2003-02, Vol.46 (1), p.119-127</ispartof><rights>Copyright National Research Council of Canada Feb 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-2cf87c80c0d226906531bd333656bf6815006c2ceca7fc4013cd858af50504c23</citedby><cites>FETCH-LOGICAL-c425t-2cf87c80c0d226906531bd333656bf6815006c2ceca7fc4013cd858af50504c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://cdnsciencepub.com/doi/pdf/10.1139/g02-111$$EPDF$$P50$$Gnrcresearch$$H</linktopdf><linktohtml>$$Uhttps://cdnsciencepub.com/doi/full/10.1139/g02-111$$EHTML$$P50$$Gnrcresearch$$H</linktohtml><link.rule.ids>314,780,784,2932,27924,27925,64428,65234</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12669804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, D.W</creatorcontrib><creatorcontrib>Armstrong, K.C</creatorcontrib><creatorcontrib>Drouin, G</creatorcontrib><creatorcontrib>McElroy, A</creatorcontrib><creatorcontrib>Fedak, G</creatorcontrib><creatorcontrib>Molnar, S.D</creatorcontrib><title>Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena</title><title>Genome</title><addtitle>Génome</addtitle><description>The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana andAvena murphyi and several sequences from different accessions of A.sativa; and (iii) A. murphyi and sequences from A. sativa andAvena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.Key words: phylogeny, genome evolution, speciation, oat.</description><subject>Avena (Poaceae)</subject><subject>Avena - enzymology</subject><subject>Avena - genetics</subject><subject>Avena sativa</subject><subject>Barley</subject><subject>Deoxyribonucleic acid</subject><subject>Diploidy</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>Flowers & plants</subject><subject>genes</subject><subject>Genetics</subject><subject>genomics</subject><subject>hexaploidy</subject><subject>Hordeum - genetics</subject><subject>molecular sequence data</subject><subject>nucleotide sequences</subject><subject>Oats</subject><subject>Oryza - genetics</subject><subject>Phylogeny</subject><subject>Plant Proteins</subject><subject>Polyploidy</subject><subject>protein kinases</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>receptors</subject><subject>sequence alignment</subject><subject>Sequence Analysis, DNA</subject><subject>speciation</subject><subject>tetraploidy</subject><subject>Triticum - genetics</subject><subject>Wheat</subject><issn>0831-2796</issn><issn>1480-3321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0d2O1CAUB_DGaNzZ1fgGSrxYP2KVA4XSy83Gj00m8cLda8LQwww7nVKhNfou-7AytomJiXrFgfz4n8ApiidA3wLw5t2WshIA7hUrqBQtOWdwv1hRxaFkdSNPitOUbikFyht4WJwAk7JRtFoVd1cpdGb0oSemb4lvsR-983Y-Co5cRz96iwaJ3cVwCCkckACJaHEYQyw7v0ey971JSLbYYyIv13EP9BVxmZPWD13w7Rsy4hjNUh877fD7vCVpQOvzvdxs3P0KmRK5-Ia9eVQ8cKZL-HhZz4qbD--vLz-V688fry4v1qWtmBhLZp2qraKWtozJhkrBYdNyzqWQGycVCEqlZRatqZ2tKHDbKqGME1TQyjJ-VpzPuUMMXydMoz74ZLHrTI9hSrrmIJqqrv4LQUlZsxoyfP4HvA1T7PMjNGNUABMVz-jFjGwMKUV0eoj-YOIPDVQfx6rzWHNxjHu6xE2bA7a_3TLHDF7PoI82YkIT7e4faed_xwvSQ-syfDZDZ4I22-iTvvnC8v9RAMYUE_wnOsjBHg</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Cheng, D.W</creator><creator>Armstrong, K.C</creator><creator>Drouin, G</creator><creator>McElroy, A</creator><creator>Fedak, G</creator><creator>Molnar, S.D</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M3G</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030201</creationdate><title>Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena</title><author>Cheng, D.W ; Armstrong, K.C ; Drouin, G ; McElroy, A ; Fedak, G ; Molnar, S.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-2cf87c80c0d226906531bd333656bf6815006c2ceca7fc4013cd858af50504c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Avena (Poaceae)</topic><topic>Avena - enzymology</topic><topic>Avena - genetics</topic><topic>Avena sativa</topic><topic>Barley</topic><topic>Deoxyribonucleic acid</topic><topic>Diploidy</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>Flowers & plants</topic><topic>genes</topic><topic>Genetics</topic><topic>genomics</topic><topic>hexaploidy</topic><topic>Hordeum - genetics</topic><topic>molecular sequence data</topic><topic>nucleotide sequences</topic><topic>Oats</topic><topic>Oryza - genetics</topic><topic>Phylogeny</topic><topic>Plant Proteins</topic><topic>Polyploidy</topic><topic>protein kinases</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>receptors</topic><topic>sequence alignment</topic><topic>Sequence Analysis, DNA</topic><topic>speciation</topic><topic>tetraploidy</topic><topic>Triticum - genetics</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, D.W</creatorcontrib><creatorcontrib>Armstrong, K.C</creatorcontrib><creatorcontrib>Drouin, G</creatorcontrib><creatorcontrib>McElroy, A</creatorcontrib><creatorcontrib>Fedak, G</creatorcontrib><creatorcontrib>Molnar, S.D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>CBCA Reference & Current Events</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, D.W</au><au>Armstrong, K.C</au><au>Drouin, G</au><au>McElroy, A</au><au>Fedak, G</au><au>Molnar, S.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena</atitle><jtitle>Genome</jtitle><addtitle>Génome</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>46</volume><issue>1</issue><spage>119</spage><epage>127</epage><pages>119-127</pages><issn>0831-2796</issn><eissn>1480-3321</eissn><coden>GENOE3</coden><abstract>The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana andAvena murphyi and several sequences from different accessions of A.sativa; and (iii) A. murphyi and sequences from A. sativa andAvena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.Key words: phylogeny, genome evolution, speciation, oat.</abstract><cop>Ottawa, Canada</cop><pub>NRC Research Press</pub><pmid>12669804</pmid><doi>10.1139/g02-111</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0831-2796 |
ispartof | Genome, 2003-02, Vol.46 (1), p.119-127 |
issn | 0831-2796 1480-3321 |
language | eng |
recordid | cdi_nrcresearch_primary_10_1139_g02_111 |
source | NRC Research Press; MEDLINE |
subjects | Avena (Poaceae) Avena - enzymology Avena - genetics Avena sativa Barley Deoxyribonucleic acid Diploidy DNA DNA Primers Flowers & plants genes Genetics genomics hexaploidy Hordeum - genetics molecular sequence data nucleotide sequences Oats Oryza - genetics Phylogeny Plant Proteins Polyploidy protein kinases Protein Structure, Tertiary Protein-Serine-Threonine Kinases - genetics receptors sequence alignment Sequence Analysis, DNA speciation tetraploidy Triticum - genetics Wheat |
title | Isolation and identification of Triticeae chromosome 1 receptor-like kinase genes (Lrk10) from diploid, tetraploid, and hexaploid species of the genus Avena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20and%20identification%20of%20Triticeae%20chromosome%201%20receptor-like%20kinase%20genes%20(Lrk10)%20from%20diploid,%20tetraploid,%20and%20hexaploid%20species%20of%20the%20genus%20Avena&rft.jtitle=Genome&rft.au=Cheng,%20D.W&rft.date=2003-02-01&rft.volume=46&rft.issue=1&rft.spage=119&rft.epage=127&rft.pages=119-127&rft.issn=0831-2796&rft.eissn=1480-3321&rft.coden=GENOE3&rft_id=info:doi/10.1139/g02-111&rft_dat=%3Cproquest_nrcre%3E18667271%3C/proquest_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220512543&rft_id=info:pmid/12669804&rfr_iscdi=true |