Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier
A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) s...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nastac, Gabriel C. Ernst, Zachary Hickey, Alexandra M. Walden, Aaron C. Jacobson, Kevin E. Jones, William T. Nielsen, Eric J. Diskin, Boris Wang, Li Korzun, Ashley M. Moran, Patrick J. Dean, Hayden V. Robertson, Bradford E. Mavris, Dimitri |
description | A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20240006977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20240006977</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202400069773</originalsourceid><addsrcrecordid>eNqFyrEOgkAMgGEWB6O-gUNf4JILGokzShhwOnbSQEmOHK1pj_fXwd3pH75_X4Q6idHkOpE3hLhuCXMUNpAZ2m1FdmHERPBCNeiQJ1J4kI3EGXrFhcYsGun7MzQqnCPpsdjNmIxOvx6Kc_Ps69YxGg6c1YbSl1fv_e1eVZc__AGrqjOy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</title><source>NASA Technical Reports Server</source><creator>Nastac, Gabriel C. ; Ernst, Zachary ; Hickey, Alexandra M. ; Walden, Aaron C. ; Jacobson, Kevin E. ; Jones, William T. ; Nielsen, Eric J. ; Diskin, Boris ; Wang, Li ; Korzun, Ashley M. ; Moran, Patrick J. ; Dean, Hayden V. ; Robertson, Bradford E. ; Mavris, Dimitri</creator><creatorcontrib>Nastac, Gabriel C. ; Ernst, Zachary ; Hickey, Alexandra M. ; Walden, Aaron C. ; Jacobson, Kevin E. ; Jones, William T. ; Nielsen, Eric J. ; Diskin, Boris ; Wang, Li ; Korzun, Ashley M. ; Moran, Patrick J. ; Dean, Hayden V. ; Robertson, Bradford E. ; Mavris, Dimitri</creatorcontrib><description>A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.</description><language>eng</language><publisher>Langley Research Center</publisher><subject>Aerodynamics</subject><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20240006977$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nastac, Gabriel C.</creatorcontrib><creatorcontrib>Ernst, Zachary</creatorcontrib><creatorcontrib>Hickey, Alexandra M.</creatorcontrib><creatorcontrib>Walden, Aaron C.</creatorcontrib><creatorcontrib>Jacobson, Kevin E.</creatorcontrib><creatorcontrib>Jones, William T.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><creatorcontrib>Diskin, Boris</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Korzun, Ashley M.</creatorcontrib><creatorcontrib>Moran, Patrick J.</creatorcontrib><creatorcontrib>Dean, Hayden V.</creatorcontrib><creatorcontrib>Robertson, Bradford E.</creatorcontrib><creatorcontrib>Mavris, Dimitri</creatorcontrib><title>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</title><description>A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.</description><subject>Aerodynamics</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNqFyrEOgkAMgGEWB6O-gUNf4JILGokzShhwOnbSQEmOHK1pj_fXwd3pH75_X4Q6idHkOpE3hLhuCXMUNpAZ2m1FdmHERPBCNeiQJ1J4kI3EGXrFhcYsGun7MzQqnCPpsdjNmIxOvx6Kc_Ps69YxGg6c1YbSl1fv_e1eVZc__AGrqjOy</recordid><creator>Nastac, Gabriel C.</creator><creator>Ernst, Zachary</creator><creator>Hickey, Alexandra M.</creator><creator>Walden, Aaron C.</creator><creator>Jacobson, Kevin E.</creator><creator>Jones, William T.</creator><creator>Nielsen, Eric J.</creator><creator>Diskin, Boris</creator><creator>Wang, Li</creator><creator>Korzun, Ashley M.</creator><creator>Moran, Patrick J.</creator><creator>Dean, Hayden V.</creator><creator>Robertson, Bradford E.</creator><creator>Mavris, Dimitri</creator><scope>CYE</scope><scope>CYI</scope></search><sort><title>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</title><author>Nastac, Gabriel C. ; Ernst, Zachary ; Hickey, Alexandra M. ; Walden, Aaron C. ; Jacobson, Kevin E. ; Jones, William T. ; Nielsen, Eric J. ; Diskin, Boris ; Wang, Li ; Korzun, Ashley M. ; Moran, Patrick J. ; Dean, Hayden V. ; Robertson, Bradford E. ; Mavris, Dimitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202400069773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><topic>Aerodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Nastac, Gabriel C.</creatorcontrib><creatorcontrib>Ernst, Zachary</creatorcontrib><creatorcontrib>Hickey, Alexandra M.</creatorcontrib><creatorcontrib>Walden, Aaron C.</creatorcontrib><creatorcontrib>Jacobson, Kevin E.</creatorcontrib><creatorcontrib>Jones, William T.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><creatorcontrib>Diskin, Boris</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Korzun, Ashley M.</creatorcontrib><creatorcontrib>Moran, Patrick J.</creatorcontrib><creatorcontrib>Dean, Hayden V.</creatorcontrib><creatorcontrib>Robertson, Bradford E.</creatorcontrib><creatorcontrib>Mavris, Dimitri</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nastac, Gabriel C.</au><au>Ernst, Zachary</au><au>Hickey, Alexandra M.</au><au>Walden, Aaron C.</au><au>Jacobson, Kevin E.</au><au>Jones, William T.</au><au>Nielsen, Eric J.</au><au>Diskin, Boris</au><au>Wang, Li</au><au>Korzun, Ashley M.</au><au>Moran, Patrick J.</au><au>Dean, Hayden V.</au><au>Robertson, Bradford E.</au><au>Mavris, Dimitri</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</atitle><abstract>A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.</abstract><cop>Langley Research Center</cop><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_nasa_ntrs_20240006977 |
source | NASA Technical Reports Server |
subjects | Aerodynamics |
title | Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Closed-Loop%20Simulations%20of%20Human-Scale%20Mars%20Lander%20Descent%20Trajectories%20on%20Frontier&rft.au=Nastac,%20Gabriel%20C.&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20240006977%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |