Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier

A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nastac, Gabriel C., Ernst, Zachary, Hickey, Alexandra M., Walden, Aaron C., Jacobson, Kevin E., Jones, William T., Nielsen, Eric J., Diskin, Boris, Wang, Li, Korzun, Ashley M., Moran, Patrick J., Dean, Hayden V., Robertson, Bradford E., Mavris, Dimitri
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nastac, Gabriel C.
Ernst, Zachary
Hickey, Alexandra M.
Walden, Aaron C.
Jacobson, Kevin E.
Jones, William T.
Nielsen, Eric J.
Diskin, Boris
Wang, Li
Korzun, Ashley M.
Moran, Patrick J.
Dean, Hayden V.
Robertson, Bradford E.
Mavris, Dimitri
description A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.
format Conference Proceeding
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20240006977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20240006977</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202400069773</originalsourceid><addsrcrecordid>eNqFyrEOgkAMgGEWB6O-gUNf4JILGokzShhwOnbSQEmOHK1pj_fXwd3pH75_X4Q6idHkOpE3hLhuCXMUNpAZ2m1FdmHERPBCNeiQJ1J4kI3EGXrFhcYsGun7MzQqnCPpsdjNmIxOvx6Kc_Ps69YxGg6c1YbSl1fv_e1eVZc__AGrqjOy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</title><source>NASA Technical Reports Server</source><creator>Nastac, Gabriel C. ; Ernst, Zachary ; Hickey, Alexandra M. ; Walden, Aaron C. ; Jacobson, Kevin E. ; Jones, William T. ; Nielsen, Eric J. ; Diskin, Boris ; Wang, Li ; Korzun, Ashley M. ; Moran, Patrick J. ; Dean, Hayden V. ; Robertson, Bradford E. ; Mavris, Dimitri</creator><creatorcontrib>Nastac, Gabriel C. ; Ernst, Zachary ; Hickey, Alexandra M. ; Walden, Aaron C. ; Jacobson, Kevin E. ; Jones, William T. ; Nielsen, Eric J. ; Diskin, Boris ; Wang, Li ; Korzun, Ashley M. ; Moran, Patrick J. ; Dean, Hayden V. ; Robertson, Bradford E. ; Mavris, Dimitri</creatorcontrib><description>A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.</description><language>eng</language><publisher>Langley Research Center</publisher><subject>Aerodynamics</subject><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20240006977$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nastac, Gabriel C.</creatorcontrib><creatorcontrib>Ernst, Zachary</creatorcontrib><creatorcontrib>Hickey, Alexandra M.</creatorcontrib><creatorcontrib>Walden, Aaron C.</creatorcontrib><creatorcontrib>Jacobson, Kevin E.</creatorcontrib><creatorcontrib>Jones, William T.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><creatorcontrib>Diskin, Boris</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Korzun, Ashley M.</creatorcontrib><creatorcontrib>Moran, Patrick J.</creatorcontrib><creatorcontrib>Dean, Hayden V.</creatorcontrib><creatorcontrib>Robertson, Bradford E.</creatorcontrib><creatorcontrib>Mavris, Dimitri</creatorcontrib><title>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</title><description>A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.</description><subject>Aerodynamics</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNqFyrEOgkAMgGEWB6O-gUNf4JILGokzShhwOnbSQEmOHK1pj_fXwd3pH75_X4Q6idHkOpE3hLhuCXMUNpAZ2m1FdmHERPBCNeiQJ1J4kI3EGXrFhcYsGun7MzQqnCPpsdjNmIxOvx6Kc_Ps69YxGg6c1YbSl1fv_e1eVZc__AGrqjOy</recordid><creator>Nastac, Gabriel C.</creator><creator>Ernst, Zachary</creator><creator>Hickey, Alexandra M.</creator><creator>Walden, Aaron C.</creator><creator>Jacobson, Kevin E.</creator><creator>Jones, William T.</creator><creator>Nielsen, Eric J.</creator><creator>Diskin, Boris</creator><creator>Wang, Li</creator><creator>Korzun, Ashley M.</creator><creator>Moran, Patrick J.</creator><creator>Dean, Hayden V.</creator><creator>Robertson, Bradford E.</creator><creator>Mavris, Dimitri</creator><scope>CYE</scope><scope>CYI</scope></search><sort><title>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</title><author>Nastac, Gabriel C. ; Ernst, Zachary ; Hickey, Alexandra M. ; Walden, Aaron C. ; Jacobson, Kevin E. ; Jones, William T. ; Nielsen, Eric J. ; Diskin, Boris ; Wang, Li ; Korzun, Ashley M. ; Moran, Patrick J. ; Dean, Hayden V. ; Robertson, Bradford E. ; Mavris, Dimitri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202400069773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><topic>Aerodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Nastac, Gabriel C.</creatorcontrib><creatorcontrib>Ernst, Zachary</creatorcontrib><creatorcontrib>Hickey, Alexandra M.</creatorcontrib><creatorcontrib>Walden, Aaron C.</creatorcontrib><creatorcontrib>Jacobson, Kevin E.</creatorcontrib><creatorcontrib>Jones, William T.</creatorcontrib><creatorcontrib>Nielsen, Eric J.</creatorcontrib><creatorcontrib>Diskin, Boris</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Korzun, Ashley M.</creatorcontrib><creatorcontrib>Moran, Patrick J.</creatorcontrib><creatorcontrib>Dean, Hayden V.</creatorcontrib><creatorcontrib>Robertson, Bradford E.</creatorcontrib><creatorcontrib>Mavris, Dimitri</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nastac, Gabriel C.</au><au>Ernst, Zachary</au><au>Hickey, Alexandra M.</au><au>Walden, Aaron C.</au><au>Jacobson, Kevin E.</au><au>Jones, William T.</au><au>Nielsen, Eric J.</au><au>Diskin, Boris</au><au>Wang, Li</au><au>Korzun, Ashley M.</au><au>Moran, Patrick J.</au><au>Dean, Hayden V.</au><au>Robertson, Bradford E.</au><au>Mavris, Dimitri</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier</atitle><abstract>A computational campaign was performed to run high-fidelity, free-flight simulations of a human-scale Mars lander concept vehicle decelerating under retropropulsion through the Martian atmosphere with closed-loop flight control. A novel approach is used to couple computational fluid dynamics (CFD) software with a mature flight mechanics package, where the two applications communicate in real-time across two geographically-dispersed computational facilities. The CFD is performed on the Frontier exascale system located at Oak Ridge National Laboratory, and the flight mechanics are executed on a system located at NASA Langley Research Center. In the current campaign, CFD is performed using finite-rate chemistry to account for the interactions between the LOXCH4 engines and the CO2 Martian atmosphere. A simulation of a closed-loop main engine throttling and RCS actuation is presented, demonstrating that the vehicle and model are able to maintain stability in a long-duration CFD-in-the-loop flight simulation. Comparisons are made to a reduced order model ignoring aero-propulsive interactions.</abstract><cop>Langley Research Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20240006977
source NASA Technical Reports Server
subjects Aerodynamics
title Closed-Loop Simulations of Human-Scale Mars Lander Descent Trajectories on Frontier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Closed-Loop%20Simulations%20of%20Human-Scale%20Mars%20Lander%20Descent%20Trajectories%20on%20Frontier&rft.au=Nastac,%20Gabriel%20C.&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20240006977%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true