Thermochemical Interactions of Yttria-Stabilized Zirconia and Molten Lunar Regolith Simulants

Oxygen produced from lunar resources through in-situ resource utilization (ISRU) is critical to maintaining a permanent human presence on the lunar surface. Molten regolith electrolysis and carbothermal reduction are two promising ISRU techniques for generating oxygen directly from lunar regolith, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yu, Kevin, Faber, Katherine T, Stokes, Jamesa, Harder, Bryan, Reidy, Lorlyn
Format: Other
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Yu, Kevin
Faber, Katherine T
Stokes, Jamesa
Harder, Bryan
Reidy, Lorlyn
description Oxygen produced from lunar resources through in-situ resource utilization (ISRU) is critical to maintaining a permanent human presence on the lunar surface. Molten regolith electrolysis and carbothermal reduction are two promising ISRU techniques for generating oxygen directly from lunar regolith, which is primarily a mixture of oxide minerals; however, both processes require operating temperatures of 1600C to melt lunar regolith and dissociate the molten oxides. These conditions limit the use of many oxide refractory materials, such as Al2O3 and MgO, due to rapid degradation resulting from reactions between the refractory materials and molten lunar regolith. Yttria-stabilized zirconia (YSZ) is a promising refractory oxide to provide containment of molten regolith while demonstrating limited reactivity. This work focuses on corrosion studies of YSZ powders and dense YSZ crucibles in contact with molten lunar mare and highlands regolith simulants at 1600C. The interactions between YSZ and molten regolith are characterized using SEM/EDS, XRD, and EBSD with an emphasis on elemental and microstructural analysis to assess reactivity and degradation of YSZ. Due to lunar regolith’s similar composition to calcium-magnesium-aluminosilicates (CMAS) and YSZ’s usage as a thermal barrier coating, these interactions can serve to inform YSZ/CMAS behavior by simulating cases of elevated CMAS/YSZ ratios and for higher than intended gas turbine temperatures.
format Other
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20240000469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20240000469</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202400004693</originalsourceid><addsrcrecordid>eNqFybEKwjAQgOEsDqK-gcO9QKHUIjgXRUEX20VByplezUFygeS6-PQ6uPsv3_DPzaNzlEK0jgJb9HASpYRWOUqGOMJNNTEWreKTPb9pgDsnG4URUAa4RK8kcJ4EE1zpFT2rg5bD5FE0L81sRJ9p9XNh1od91xwLwYy9aMp9VVZ1-a3e7jZ_9gejaThL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>other</recordtype></control><display><type>other</type><title>Thermochemical Interactions of Yttria-Stabilized Zirconia and Molten Lunar Regolith Simulants</title><source>NASA Technical Reports Server</source><creator>Yu, Kevin ; Faber, Katherine T ; Stokes, Jamesa ; Harder, Bryan ; Reidy, Lorlyn</creator><creatorcontrib>Yu, Kevin ; Faber, Katherine T ; Stokes, Jamesa ; Harder, Bryan ; Reidy, Lorlyn</creatorcontrib><description>Oxygen produced from lunar resources through in-situ resource utilization (ISRU) is critical to maintaining a permanent human presence on the lunar surface. Molten regolith electrolysis and carbothermal reduction are two promising ISRU techniques for generating oxygen directly from lunar regolith, which is primarily a mixture of oxide minerals; however, both processes require operating temperatures of 1600C to melt lunar regolith and dissociate the molten oxides. These conditions limit the use of many oxide refractory materials, such as Al2O3 and MgO, due to rapid degradation resulting from reactions between the refractory materials and molten lunar regolith. Yttria-stabilized zirconia (YSZ) is a promising refractory oxide to provide containment of molten regolith while demonstrating limited reactivity. This work focuses on corrosion studies of YSZ powders and dense YSZ crucibles in contact with molten lunar mare and highlands regolith simulants at 1600C. The interactions between YSZ and molten regolith are characterized using SEM/EDS, XRD, and EBSD with an emphasis on elemental and microstructural analysis to assess reactivity and degradation of YSZ. Due to lunar regolith’s similar composition to calcium-magnesium-aluminosilicates (CMAS) and YSZ’s usage as a thermal barrier coating, these interactions can serve to inform YSZ/CMAS behavior by simulating cases of elevated CMAS/YSZ ratios and for higher than intended gas turbine temperatures.</description><language>eng</language><publisher>Glenn Research Center</publisher><subject>Chemistry and Materials (General)</subject><rights>Copyright Determination: GOV_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20240000469$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yu, Kevin</creatorcontrib><creatorcontrib>Faber, Katherine T</creatorcontrib><creatorcontrib>Stokes, Jamesa</creatorcontrib><creatorcontrib>Harder, Bryan</creatorcontrib><creatorcontrib>Reidy, Lorlyn</creatorcontrib><title>Thermochemical Interactions of Yttria-Stabilized Zirconia and Molten Lunar Regolith Simulants</title><description>Oxygen produced from lunar resources through in-situ resource utilization (ISRU) is critical to maintaining a permanent human presence on the lunar surface. Molten regolith electrolysis and carbothermal reduction are two promising ISRU techniques for generating oxygen directly from lunar regolith, which is primarily a mixture of oxide minerals; however, both processes require operating temperatures of 1600C to melt lunar regolith and dissociate the molten oxides. These conditions limit the use of many oxide refractory materials, such as Al2O3 and MgO, due to rapid degradation resulting from reactions between the refractory materials and molten lunar regolith. Yttria-stabilized zirconia (YSZ) is a promising refractory oxide to provide containment of molten regolith while demonstrating limited reactivity. This work focuses on corrosion studies of YSZ powders and dense YSZ crucibles in contact with molten lunar mare and highlands regolith simulants at 1600C. The interactions between YSZ and molten regolith are characterized using SEM/EDS, XRD, and EBSD with an emphasis on elemental and microstructural analysis to assess reactivity and degradation of YSZ. Due to lunar regolith’s similar composition to calcium-magnesium-aluminosilicates (CMAS) and YSZ’s usage as a thermal barrier coating, these interactions can serve to inform YSZ/CMAS behavior by simulating cases of elevated CMAS/YSZ ratios and for higher than intended gas turbine temperatures.</description><subject>Chemistry and Materials (General)</subject><fulltext>true</fulltext><rsrctype>other</rsrctype><recordtype>other</recordtype><sourceid>CYI</sourceid><recordid>eNqFybEKwjAQgOEsDqK-gcO9QKHUIjgXRUEX20VByplezUFygeS6-PQ6uPsv3_DPzaNzlEK0jgJb9HASpYRWOUqGOMJNNTEWreKTPb9pgDsnG4URUAa4RK8kcJ4EE1zpFT2rg5bD5FE0L81sRJ9p9XNh1od91xwLwYy9aMp9VVZ1-a3e7jZ_9gejaThL</recordid><creator>Yu, Kevin</creator><creator>Faber, Katherine T</creator><creator>Stokes, Jamesa</creator><creator>Harder, Bryan</creator><creator>Reidy, Lorlyn</creator><scope>CYE</scope><scope>CYI</scope></search><sort><title>Thermochemical Interactions of Yttria-Stabilized Zirconia and Molten Lunar Regolith Simulants</title><author>Yu, Kevin ; Faber, Katherine T ; Stokes, Jamesa ; Harder, Bryan ; Reidy, Lorlyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202400004693</frbrgroupid><rsrctype>other</rsrctype><prefilter>other</prefilter><language>eng</language><topic>Chemistry and Materials (General)</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kevin</creatorcontrib><creatorcontrib>Faber, Katherine T</creatorcontrib><creatorcontrib>Stokes, Jamesa</creatorcontrib><creatorcontrib>Harder, Bryan</creatorcontrib><creatorcontrib>Reidy, Lorlyn</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Kevin</au><au>Faber, Katherine T</au><au>Stokes, Jamesa</au><au>Harder, Bryan</au><au>Reidy, Lorlyn</au><format>book</format><genre>document</genre><ristype>GEN</ristype><title>Thermochemical Interactions of Yttria-Stabilized Zirconia and Molten Lunar Regolith Simulants</title><abstract>Oxygen produced from lunar resources through in-situ resource utilization (ISRU) is critical to maintaining a permanent human presence on the lunar surface. Molten regolith electrolysis and carbothermal reduction are two promising ISRU techniques for generating oxygen directly from lunar regolith, which is primarily a mixture of oxide minerals; however, both processes require operating temperatures of 1600C to melt lunar regolith and dissociate the molten oxides. These conditions limit the use of many oxide refractory materials, such as Al2O3 and MgO, due to rapid degradation resulting from reactions between the refractory materials and molten lunar regolith. Yttria-stabilized zirconia (YSZ) is a promising refractory oxide to provide containment of molten regolith while demonstrating limited reactivity. This work focuses on corrosion studies of YSZ powders and dense YSZ crucibles in contact with molten lunar mare and highlands regolith simulants at 1600C. The interactions between YSZ and molten regolith are characterized using SEM/EDS, XRD, and EBSD with an emphasis on elemental and microstructural analysis to assess reactivity and degradation of YSZ. Due to lunar regolith’s similar composition to calcium-magnesium-aluminosilicates (CMAS) and YSZ’s usage as a thermal barrier coating, these interactions can serve to inform YSZ/CMAS behavior by simulating cases of elevated CMAS/YSZ ratios and for higher than intended gas turbine temperatures.</abstract><cop>Glenn Research Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20240000469
source NASA Technical Reports Server
subjects Chemistry and Materials (General)
title Thermochemical Interactions of Yttria-Stabilized Zirconia and Molten Lunar Regolith Simulants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.au=Yu,%20Kevin&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20240000469%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true