Design Optimization of Energized Composite Using Simulation and Experimental Methods

As electric vehicles (EVs) are evolving, innovative technologies like “energized composite” that can store energy in the car's body helps extend its range per charge. The composite's unique ability to function as both structural body panel and charge storage medium stems from its unique pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2022-10, Vol.10 (12)
Hauptverfasser: Pandey, Deepak, Gurjar, Rajkumar, Kumar, Kowsik Sambath, Henderson, Leaford Nathan, Tresa, Maydenee Maydur, Roberson, Luke, Hussain, AbdulJabbar Mohammed, Dale, Nilesh, Thomas, Jayan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 10
creator Pandey, Deepak
Gurjar, Rajkumar
Kumar, Kowsik Sambath
Henderson, Leaford Nathan
Tresa, Maydenee Maydur
Roberson, Luke
Hussain, AbdulJabbar Mohammed
Dale, Nilesh
Thomas, Jayan
description As electric vehicles (EVs) are evolving, innovative technologies like “energized composite” that can store energy in the car's body helps extend its range per charge. The composite's unique ability to function as both structural body panel and charge storage medium stems from its unique pattern design between “electrochemical areas (EcA)” and “epoxy area (EpA)”. Herein, a design optimization study is presented to obtain a balanced ratio between EcA versus EpA to maximize the charge storage ability of the composite while maintaining a decent tensile and bending strength. Simulations using ANSYS software and experimental confirmation using universal testing machines and electrochemical analyzers are used to derive optimum ratios between EcA and EpA. Uniaxial tension test and 3-point bend test have been performed to optimize the tensile and bend strengths, whereas cyclic voltammetry, galvanic charge–discharge, and electrochemical impedance spectroscopy are used to determine the electrochemical performance of various design configurations by modulating the ratios of EcA versus EpA. Overall, the highest achieved energy storage per lamina is 2531 mWh m−2 for a maximum of 81.6% EcA with a tensile strength of 417.73 MPa and bending strength of 263.13 MPa. This study is highly beneficial for EVs and aerospace applications.
doi_str_mv 10.1002/ente.202200726
format Article
fullrecord <record><control><sourceid>nasa</sourceid><recordid>TN_cdi_nasa_ntrs_20220015568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20220015568</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202200155683</originalsourceid><addsrcrecordid>eNqFjrEKwkAQRA9RMKitlcX9gHHvYmKsNWIjFmotB1njSnIXsidIvl4hYms1A2_gjRBTBaEC0Au0HkMNWgOsdNITgVbr5Xyp10n_19N0KCbMDwBQEEcxRIE4b5GpsPJYe6qoNZ6cle4mM4tNQS3mcuOq2jF5lBcmW8gTVc-y2xmby-xVY0PVx29KeUB_dzmPxeBmSsbJN0ditsvOm_3cGjZX6xu-dldVHCdp9Ae_AdTTQTY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design Optimization of Energized Composite Using Simulation and Experimental Methods</title><source>Wiley Online Library Journals Frontfile Complete</source><source>NASA Technical Reports Server</source><creator>Pandey, Deepak ; Gurjar, Rajkumar ; Kumar, Kowsik Sambath ; Henderson, Leaford Nathan ; Tresa, Maydenee Maydur ; Roberson, Luke ; Hussain, AbdulJabbar Mohammed ; Dale, Nilesh ; Thomas, Jayan</creator><creatorcontrib>Pandey, Deepak ; Gurjar, Rajkumar ; Kumar, Kowsik Sambath ; Henderson, Leaford Nathan ; Tresa, Maydenee Maydur ; Roberson, Luke ; Hussain, AbdulJabbar Mohammed ; Dale, Nilesh ; Thomas, Jayan</creatorcontrib><description>As electric vehicles (EVs) are evolving, innovative technologies like “energized composite” that can store energy in the car's body helps extend its range per charge. The composite's unique ability to function as both structural body panel and charge storage medium stems from its unique pattern design between “electrochemical areas (EcA)” and “epoxy area (EpA)”. Herein, a design optimization study is presented to obtain a balanced ratio between EcA versus EpA to maximize the charge storage ability of the composite while maintaining a decent tensile and bending strength. Simulations using ANSYS software and experimental confirmation using universal testing machines and electrochemical analyzers are used to derive optimum ratios between EcA and EpA. Uniaxial tension test and 3-point bend test have been performed to optimize the tensile and bend strengths, whereas cyclic voltammetry, galvanic charge–discharge, and electrochemical impedance spectroscopy are used to determine the electrochemical performance of various design configurations by modulating the ratios of EcA versus EpA. Overall, the highest achieved energy storage per lamina is 2531 mWh m−2 for a maximum of 81.6% EcA with a tensile strength of 417.73 MPa and bending strength of 263.13 MPa. This study is highly beneficial for EVs and aerospace applications.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202200726</identifier><language>eng</language><publisher>Kennedy Space Center: Wiley-VCH Verlag /Wiley</publisher><subject>Composite Materials ; Energy Production And Conversion</subject><ispartof>Energy technology (Weinheim, Germany), 2022-10, Vol.10 (12)</ispartof><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0037-2539 ; 0000-0002-8872-5801 ; 0000-0003-3579-6064 ; 0000-0003-2806-8886 ; 0000-0002-1817-2447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,797,27905,27906</link.rule.ids></links><search><creatorcontrib>Pandey, Deepak</creatorcontrib><creatorcontrib>Gurjar, Rajkumar</creatorcontrib><creatorcontrib>Kumar, Kowsik Sambath</creatorcontrib><creatorcontrib>Henderson, Leaford Nathan</creatorcontrib><creatorcontrib>Tresa, Maydenee Maydur</creatorcontrib><creatorcontrib>Roberson, Luke</creatorcontrib><creatorcontrib>Hussain, AbdulJabbar Mohammed</creatorcontrib><creatorcontrib>Dale, Nilesh</creatorcontrib><creatorcontrib>Thomas, Jayan</creatorcontrib><title>Design Optimization of Energized Composite Using Simulation and Experimental Methods</title><title>Energy technology (Weinheim, Germany)</title><description>As electric vehicles (EVs) are evolving, innovative technologies like “energized composite” that can store energy in the car's body helps extend its range per charge. The composite's unique ability to function as both structural body panel and charge storage medium stems from its unique pattern design between “electrochemical areas (EcA)” and “epoxy area (EpA)”. Herein, a design optimization study is presented to obtain a balanced ratio between EcA versus EpA to maximize the charge storage ability of the composite while maintaining a decent tensile and bending strength. Simulations using ANSYS software and experimental confirmation using universal testing machines and electrochemical analyzers are used to derive optimum ratios between EcA and EpA. Uniaxial tension test and 3-point bend test have been performed to optimize the tensile and bend strengths, whereas cyclic voltammetry, galvanic charge–discharge, and electrochemical impedance spectroscopy are used to determine the electrochemical performance of various design configurations by modulating the ratios of EcA versus EpA. Overall, the highest achieved energy storage per lamina is 2531 mWh m−2 for a maximum of 81.6% EcA with a tensile strength of 417.73 MPa and bending strength of 263.13 MPa. This study is highly beneficial for EVs and aerospace applications.</description><subject>Composite Materials</subject><subject>Energy Production And Conversion</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqFjrEKwkAQRA9RMKitlcX9gHHvYmKsNWIjFmotB1njSnIXsidIvl4hYms1A2_gjRBTBaEC0Au0HkMNWgOsdNITgVbr5Xyp10n_19N0KCbMDwBQEEcxRIE4b5GpsPJYe6qoNZ6cle4mM4tNQS3mcuOq2jF5lBcmW8gTVc-y2xmby-xVY0PVx29KeUB_dzmPxeBmSsbJN0ditsvOm_3cGjZX6xu-dldVHCdp9Ae_AdTTQTY</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Pandey, Deepak</creator><creator>Gurjar, Rajkumar</creator><creator>Kumar, Kowsik Sambath</creator><creator>Henderson, Leaford Nathan</creator><creator>Tresa, Maydenee Maydur</creator><creator>Roberson, Luke</creator><creator>Hussain, AbdulJabbar Mohammed</creator><creator>Dale, Nilesh</creator><creator>Thomas, Jayan</creator><general>Wiley-VCH Verlag /Wiley</general><scope>CYE</scope><scope>CYI</scope><orcidid>https://orcid.org/0000-0002-0037-2539</orcidid><orcidid>https://orcid.org/0000-0002-8872-5801</orcidid><orcidid>https://orcid.org/0000-0003-3579-6064</orcidid><orcidid>https://orcid.org/0000-0003-2806-8886</orcidid><orcidid>https://orcid.org/0000-0002-1817-2447</orcidid></search><sort><creationdate>20221018</creationdate><title>Design Optimization of Energized Composite Using Simulation and Experimental Methods</title><author>Pandey, Deepak ; Gurjar, Rajkumar ; Kumar, Kowsik Sambath ; Henderson, Leaford Nathan ; Tresa, Maydenee Maydur ; Roberson, Luke ; Hussain, AbdulJabbar Mohammed ; Dale, Nilesh ; Thomas, Jayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202200155683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composite Materials</topic><topic>Energy Production And Conversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandey, Deepak</creatorcontrib><creatorcontrib>Gurjar, Rajkumar</creatorcontrib><creatorcontrib>Kumar, Kowsik Sambath</creatorcontrib><creatorcontrib>Henderson, Leaford Nathan</creatorcontrib><creatorcontrib>Tresa, Maydenee Maydur</creatorcontrib><creatorcontrib>Roberson, Luke</creatorcontrib><creatorcontrib>Hussain, AbdulJabbar Mohammed</creatorcontrib><creatorcontrib>Dale, Nilesh</creatorcontrib><creatorcontrib>Thomas, Jayan</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pandey, Deepak</au><au>Gurjar, Rajkumar</au><au>Kumar, Kowsik Sambath</au><au>Henderson, Leaford Nathan</au><au>Tresa, Maydenee Maydur</au><au>Roberson, Luke</au><au>Hussain, AbdulJabbar Mohammed</au><au>Dale, Nilesh</au><au>Thomas, Jayan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization of Energized Composite Using Simulation and Experimental Methods</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2022-10-18</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>As electric vehicles (EVs) are evolving, innovative technologies like “energized composite” that can store energy in the car's body helps extend its range per charge. The composite's unique ability to function as both structural body panel and charge storage medium stems from its unique pattern design between “electrochemical areas (EcA)” and “epoxy area (EpA)”. Herein, a design optimization study is presented to obtain a balanced ratio between EcA versus EpA to maximize the charge storage ability of the composite while maintaining a decent tensile and bending strength. Simulations using ANSYS software and experimental confirmation using universal testing machines and electrochemical analyzers are used to derive optimum ratios between EcA and EpA. Uniaxial tension test and 3-point bend test have been performed to optimize the tensile and bend strengths, whereas cyclic voltammetry, galvanic charge–discharge, and electrochemical impedance spectroscopy are used to determine the electrochemical performance of various design configurations by modulating the ratios of EcA versus EpA. Overall, the highest achieved energy storage per lamina is 2531 mWh m−2 for a maximum of 81.6% EcA with a tensile strength of 417.73 MPa and bending strength of 263.13 MPa. This study is highly beneficial for EVs and aerospace applications.</abstract><cop>Kennedy Space Center</cop><pub>Wiley-VCH Verlag /Wiley</pub><doi>10.1002/ente.202200726</doi><orcidid>https://orcid.org/0000-0002-0037-2539</orcidid><orcidid>https://orcid.org/0000-0002-8872-5801</orcidid><orcidid>https://orcid.org/0000-0003-3579-6064</orcidid><orcidid>https://orcid.org/0000-0003-2806-8886</orcidid><orcidid>https://orcid.org/0000-0002-1817-2447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2022-10, Vol.10 (12)
issn 2194-4288
2194-4296
language eng
recordid cdi_nasa_ntrs_20220015568
source Wiley Online Library Journals Frontfile Complete; NASA Technical Reports Server
subjects Composite Materials
Energy Production And Conversion
title Design Optimization of Energized Composite Using Simulation and Experimental Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20of%20Energized%20Composite%20Using%20Simulation%20and%20Experimental%20Methods&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Pandey,%20Deepak&rft.date=2022-10-18&rft.volume=10&rft.issue=12&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202200726&rft_dat=%3Cnasa%3E20220015568%3C/nasa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true