Crater Retention Observations of the Crater Floor–Fractured Rough Unit in Jezero Crater

A main goal of the Mars2020 Perseverance Rover mission is to provide a compelling suite of samples for eventual return to Earth [1]. A high priority goal for Mars Sample Return is calibrating Mars’ crater retention isochrons that are used to date geologic surfaces and events across the planet [2]. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: III, F.J. Calef, S.Alwmark, S.Alwmark, Herd, C.D.K., Simon, J.I., Shuster, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator III, F.J. Calef
S.Alwmark, S.Alwmark
Herd, C.D.K.
Simon, J.I.
Shuster, D.
description A main goal of the Mars2020 Perseverance Rover mission is to provide a compelling suite of samples for eventual return to Earth [1]. A high priority goal for Mars Sample Return is calibrating Mars’ crater retention isochrons that are used to date geologic surfaces and events across the planet [2]. Several factors are necessary to consider what type of rock would be most useful for this purpose: ability to retain craters across a large exposure, access to drillable outcrop, identifiable stratigraphic context, and understanding why this specific rock type preferentially retains crater morphology. Now that we’ve seen the surface and sampled some of the main constituent outcrops on the Crater Floor – Fractured Rough unit [3, Simon et al, this conference] (Figure 1), we can begin assessing which rocks can help us achieve this important goal to not only understand the age relationships between stratigraphic units in Jezero crater, but also improve age estimates across Mars.
format Conference Proceeding
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20220000432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20220000432</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202200004323</originalsourceid><addsrcrecordid>eNrjZIh0LkosSS1SCEotSc0ryczPU_BPKk4tKksEsYsV8tMUSjJSFaCK3HLy84seNUx2K0pMLiktSk1RCMovTc9QCM3LLFHIzFPwSq1KLcqHquZhYE1LzClO5YXS3Awybq4hzh66eYnFifF5JUXF8UYGRkYGQGBibGRMQBoAtPw23g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Crater Retention Observations of the Crater Floor–Fractured Rough Unit in Jezero Crater</title><source>NASA Technical Reports Server</source><creator>III, F.J. Calef ; S.Alwmark, S.Alwmark ; Herd, C.D.K. ; Simon, J.I. ; Shuster, D.</creator><creatorcontrib>III, F.J. Calef ; S.Alwmark, S.Alwmark ; Herd, C.D.K. ; Simon, J.I. ; Shuster, D.</creatorcontrib><description>A main goal of the Mars2020 Perseverance Rover mission is to provide a compelling suite of samples for eventual return to Earth [1]. A high priority goal for Mars Sample Return is calibrating Mars’ crater retention isochrons that are used to date geologic surfaces and events across the planet [2]. Several factors are necessary to consider what type of rock would be most useful for this purpose: ability to retain craters across a large exposure, access to drillable outcrop, identifiable stratigraphic context, and understanding why this specific rock type preferentially retains crater morphology. Now that we’ve seen the surface and sampled some of the main constituent outcrops on the Crater Floor – Fractured Rough unit [3, Simon et al, this conference] (Figure 1), we can begin assessing which rocks can help us achieve this important goal to not only understand the age relationships between stratigraphic units in Jezero crater, but also improve age estimates across Mars.</description><language>eng</language><publisher>Johnson Space Center</publisher><subject>Lunar And Planetary Science And Exploration</subject><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20220000432$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>III, F.J. Calef</creatorcontrib><creatorcontrib>S.Alwmark, S.Alwmark</creatorcontrib><creatorcontrib>Herd, C.D.K.</creatorcontrib><creatorcontrib>Simon, J.I.</creatorcontrib><creatorcontrib>Shuster, D.</creatorcontrib><title>Crater Retention Observations of the Crater Floor–Fractured Rough Unit in Jezero Crater</title><description>A main goal of the Mars2020 Perseverance Rover mission is to provide a compelling suite of samples for eventual return to Earth [1]. A high priority goal for Mars Sample Return is calibrating Mars’ crater retention isochrons that are used to date geologic surfaces and events across the planet [2]. Several factors are necessary to consider what type of rock would be most useful for this purpose: ability to retain craters across a large exposure, access to drillable outcrop, identifiable stratigraphic context, and understanding why this specific rock type preferentially retains crater morphology. Now that we’ve seen the surface and sampled some of the main constituent outcrops on the Crater Floor – Fractured Rough unit [3, Simon et al, this conference] (Figure 1), we can begin assessing which rocks can help us achieve this important goal to not only understand the age relationships between stratigraphic units in Jezero crater, but also improve age estimates across Mars.</description><subject>Lunar And Planetary Science And Exploration</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNrjZIh0LkosSS1SCEotSc0ryczPU_BPKk4tKksEsYsV8tMUSjJSFaCK3HLy84seNUx2K0pMLiktSk1RCMovTc9QCM3LLFHIzFPwSq1KLcqHquZhYE1LzClO5YXS3Awybq4hzh66eYnFifF5JUXF8UYGRkYGQGBibGRMQBoAtPw23g</recordid><creator>III, F.J. Calef</creator><creator>S.Alwmark, S.Alwmark</creator><creator>Herd, C.D.K.</creator><creator>Simon, J.I.</creator><creator>Shuster, D.</creator><scope>CYE</scope><scope>CYI</scope></search><sort><title>Crater Retention Observations of the Crater Floor–Fractured Rough Unit in Jezero Crater</title><author>III, F.J. Calef ; S.Alwmark, S.Alwmark ; Herd, C.D.K. ; Simon, J.I. ; Shuster, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202200004323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><topic>Lunar And Planetary Science And Exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>III, F.J. Calef</creatorcontrib><creatorcontrib>S.Alwmark, S.Alwmark</creatorcontrib><creatorcontrib>Herd, C.D.K.</creatorcontrib><creatorcontrib>Simon, J.I.</creatorcontrib><creatorcontrib>Shuster, D.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>III, F.J. Calef</au><au>S.Alwmark, S.Alwmark</au><au>Herd, C.D.K.</au><au>Simon, J.I.</au><au>Shuster, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Crater Retention Observations of the Crater Floor–Fractured Rough Unit in Jezero Crater</atitle><abstract>A main goal of the Mars2020 Perseverance Rover mission is to provide a compelling suite of samples for eventual return to Earth [1]. A high priority goal for Mars Sample Return is calibrating Mars’ crater retention isochrons that are used to date geologic surfaces and events across the planet [2]. Several factors are necessary to consider what type of rock would be most useful for this purpose: ability to retain craters across a large exposure, access to drillable outcrop, identifiable stratigraphic context, and understanding why this specific rock type preferentially retains crater morphology. Now that we’ve seen the surface and sampled some of the main constituent outcrops on the Crater Floor – Fractured Rough unit [3, Simon et al, this conference] (Figure 1), we can begin assessing which rocks can help us achieve this important goal to not only understand the age relationships between stratigraphic units in Jezero crater, but also improve age estimates across Mars.</abstract><cop>Johnson Space Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20220000432
source NASA Technical Reports Server
subjects Lunar And Planetary Science And Exploration
title Crater Retention Observations of the Crater Floor–Fractured Rough Unit in Jezero Crater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Crater%20Retention%20Observations%20of%20the%20Crater%20Floor%E2%80%93Fractured%20Rough%20Unit%20in%20Jezero%20Crater&rft.au=III,%20F.J.%20Calef&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20220000432%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true