3D Phase-Field Simulations of Pattern Formation During Freeze Casting

We present the results of a combined experimental and phase-field modeling study of pattern formation during freeze casting. Those studies use unidirectional freezing of simple binary liquid mixtures of water and sugars (sucrose and trehalose) in a temperature gradient, which suffice to produce hier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ji, Kaihua, Yin, Kaiyang, Strutzenberg, Louise L, Trivedi, Rohit, Wegst, Ulrike G K, Karma, Alain
Format: Other
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ji, Kaihua
Yin, Kaiyang
Strutzenberg, Louise L
Trivedi, Rohit
Wegst, Ulrike G K
Karma, Alain
description We present the results of a combined experimental and phase-field modeling study of pattern formation during freeze casting. Those studies use unidirectional freezing of simple binary liquid mixtures of water and sugars (sucrose and trehalose) in a temperature gradient, which suffice to produce hierarchical templated structures similar to those observed in more complex multi-component freeze-cast systems including lamellae, undulated ridges, and more exotic “jellyfish-like” substructures. Multiscale 3D phase-field simulations reproduce remarkably well those structures quantitatively and identify key properties of the ice-water interface that control their formation. They further reveal that lamellae form as a result of a novel symmetry-breaking secondary instability of partially faceted cellular structures and pinpoint additional secondary instability mechanisms giving rise to smaller-scale substructures.
format Other
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20210011296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20210011296</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202100112963</originalsourceid><addsrcrecordid>eNrjZHA1dlEIyEgsTtV1y0zNSVEIzswtzUksyczPK1bIT1MISCwpSS3KU3DLL8oFiyq4lBZl5qUruBWlplalKjgnFpcAuTwMrGmJOcWpvFCam0HGzTXE2UM3L7E4MT6vpKg43sjAyNDAwNDQyNLMmIA0AFHwLhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>other</recordtype></control><display><type>other</type><title>3D Phase-Field Simulations of Pattern Formation During Freeze Casting</title><source>NASA Technical Reports Server</source><creator>Ji, Kaihua ; Yin, Kaiyang ; Strutzenberg, Louise L ; Trivedi, Rohit ; Wegst, Ulrike G K ; Karma, Alain</creator><creatorcontrib>Ji, Kaihua ; Yin, Kaiyang ; Strutzenberg, Louise L ; Trivedi, Rohit ; Wegst, Ulrike G K ; Karma, Alain</creatorcontrib><description>We present the results of a combined experimental and phase-field modeling study of pattern formation during freeze casting. Those studies use unidirectional freezing of simple binary liquid mixtures of water and sugars (sucrose and trehalose) in a temperature gradient, which suffice to produce hierarchical templated structures similar to those observed in more complex multi-component freeze-cast systems including lamellae, undulated ridges, and more exotic “jellyfish-like” substructures. Multiscale 3D phase-field simulations reproduce remarkably well those structures quantitatively and identify key properties of the ice-water interface that control their formation. They further reveal that lamellae form as a result of a novel symmetry-breaking secondary instability of partially faceted cellular structures and pinpoint additional secondary instability mechanisms giving rise to smaller-scale substructures.</description><language>eng</language><publisher>Marshall Space Flight Center</publisher><subject>Meteorology And Climatology ; Physics (General)</subject><rights>Copyright Determination: GOV_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,800</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20210011296$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ji, Kaihua</creatorcontrib><creatorcontrib>Yin, Kaiyang</creatorcontrib><creatorcontrib>Strutzenberg, Louise L</creatorcontrib><creatorcontrib>Trivedi, Rohit</creatorcontrib><creatorcontrib>Wegst, Ulrike G K</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><title>3D Phase-Field Simulations of Pattern Formation During Freeze Casting</title><description>We present the results of a combined experimental and phase-field modeling study of pattern formation during freeze casting. Those studies use unidirectional freezing of simple binary liquid mixtures of water and sugars (sucrose and trehalose) in a temperature gradient, which suffice to produce hierarchical templated structures similar to those observed in more complex multi-component freeze-cast systems including lamellae, undulated ridges, and more exotic “jellyfish-like” substructures. Multiscale 3D phase-field simulations reproduce remarkably well those structures quantitatively and identify key properties of the ice-water interface that control their formation. They further reveal that lamellae form as a result of a novel symmetry-breaking secondary instability of partially faceted cellular structures and pinpoint additional secondary instability mechanisms giving rise to smaller-scale substructures.</description><subject>Meteorology And Climatology</subject><subject>Physics (General)</subject><fulltext>true</fulltext><rsrctype>other</rsrctype><recordtype>other</recordtype><sourceid>CYI</sourceid><recordid>eNrjZHA1dlEIyEgsTtV1y0zNSVEIzswtzUksyczPK1bIT1MISCwpSS3KU3DLL8oFiyq4lBZl5qUruBWlplalKjgnFpcAuTwMrGmJOcWpvFCam0HGzTXE2UM3L7E4MT6vpKg43sjAyNDAwNDQyNLMmIA0AFHwLhA</recordid><creator>Ji, Kaihua</creator><creator>Yin, Kaiyang</creator><creator>Strutzenberg, Louise L</creator><creator>Trivedi, Rohit</creator><creator>Wegst, Ulrike G K</creator><creator>Karma, Alain</creator><scope>CYE</scope><scope>CYI</scope></search><sort><title>3D Phase-Field Simulations of Pattern Formation During Freeze Casting</title><author>Ji, Kaihua ; Yin, Kaiyang ; Strutzenberg, Louise L ; Trivedi, Rohit ; Wegst, Ulrike G K ; Karma, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202100112963</frbrgroupid><rsrctype>other</rsrctype><prefilter>other</prefilter><language>eng</language><topic>Meteorology And Climatology</topic><topic>Physics (General)</topic><toplevel>online_resources</toplevel><creatorcontrib>Ji, Kaihua</creatorcontrib><creatorcontrib>Yin, Kaiyang</creatorcontrib><creatorcontrib>Strutzenberg, Louise L</creatorcontrib><creatorcontrib>Trivedi, Rohit</creatorcontrib><creatorcontrib>Wegst, Ulrike G K</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji, Kaihua</au><au>Yin, Kaiyang</au><au>Strutzenberg, Louise L</au><au>Trivedi, Rohit</au><au>Wegst, Ulrike G K</au><au>Karma, Alain</au><format>book</format><genre>document</genre><ristype>GEN</ristype><title>3D Phase-Field Simulations of Pattern Formation During Freeze Casting</title><abstract>We present the results of a combined experimental and phase-field modeling study of pattern formation during freeze casting. Those studies use unidirectional freezing of simple binary liquid mixtures of water and sugars (sucrose and trehalose) in a temperature gradient, which suffice to produce hierarchical templated structures similar to those observed in more complex multi-component freeze-cast systems including lamellae, undulated ridges, and more exotic “jellyfish-like” substructures. Multiscale 3D phase-field simulations reproduce remarkably well those structures quantitatively and identify key properties of the ice-water interface that control their formation. They further reveal that lamellae form as a result of a novel symmetry-breaking secondary instability of partially faceted cellular structures and pinpoint additional secondary instability mechanisms giving rise to smaller-scale substructures.</abstract><cop>Marshall Space Flight Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20210011296
source NASA Technical Reports Server
subjects Meteorology And Climatology
Physics (General)
title 3D Phase-Field Simulations of Pattern Formation During Freeze Casting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.au=Ji,%20Kaihua&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20210011296%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true