Application of Artificial Intelligence for Surface PM2.5 Estimations from Geostationary Satellite and Atmospheric Numerical Model Data

PM2.5, particulate matter (PM) with a diameter less than or equal to 2.5 μm, is emitted from anthropogenic fuel combustion and forest fires. Due to their small size, PM2.5 can penetrate into respiratory systems and cause or exacerbate serious illness. The US Environmental Protection Agency (EPA) reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khatri, Manisha, Gahlot, Shubhankar, Ramasubramanian, Muthukumaran, Gurung, Iksha, Kaulfus, Aaron S., Priftis, George, Cheng, Peiyang, Gupta, Pavan, Maskey, Manil, Ramachandran, Rahul, Christopher, Sundar, Chung, Haeyong
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Khatri, Manisha
Gahlot, Shubhankar
Ramasubramanian, Muthukumaran
Gurung, Iksha
Kaulfus, Aaron S.
Priftis, George
Cheng, Peiyang
Gupta, Pavan
Maskey, Manil
Ramachandran, Rahul
Christopher, Sundar
Chung, Haeyong
description PM2.5, particulate matter (PM) with a diameter less than or equal to 2.5 μm, is emitted from anthropogenic fuel combustion and forest fires. Due to their small size, PM2.5 can penetrate into respiratory systems and cause or exacerbate serious illness. The US Environmental Protection Agency (EPA) regulates the levels of surface PM2.5 but surface monitoring has spatial and temporal limitations. The Aerosol Optical Depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) missions and meteorological factors can be utilized as an alternative technique to estimate surface PM2.5 levels at a higher spatial and temporal resolution compared to surface monitors. Traditional estimation approaches rely on linear regression techniques and have limitations modeling the nonlinear relationship between the meteorological factors, AOD retrievals, and surface PM2.5. We compare different machine learning techniques and identify the best-suited model that can represent the nonlinearity between the factors affecting PM2.5 levels
format Image
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20205011654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20205011654</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202050116543</originalsourceid><addsrcrecordid>eNqFjT0OgkAQhWksjHoDi7mABlDsieJPgTHBnkyWWZ1k2SW7Q-EFPLdI7K2-l_fy5U2jd951hhUKOwtOQ-6FNStGAxcrZAw_yCoC7TxUvdc45FuZrjMognA7egG0dy2cyAUZC_QvqHC0hQBtA7m0LnRP8qzg2rdfDg-la8jAAQXn0USjCbT4cRYtj8V9f15ZDFhb8aFO4zTO4iTZZdvNn_kDqvxGlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Application of Artificial Intelligence for Surface PM2.5 Estimations from Geostationary Satellite and Atmospheric Numerical Model Data</title><source>NASA Technical Reports Server</source><creator>Khatri, Manisha ; Gahlot, Shubhankar ; Ramasubramanian, Muthukumaran ; Gurung, Iksha ; Kaulfus, Aaron S. ; Priftis, George ; Cheng, Peiyang ; Gupta, Pavan ; Maskey, Manil ; Ramachandran, Rahul ; Christopher, Sundar ; Chung, Haeyong</creator><creatorcontrib>Khatri, Manisha ; Gahlot, Shubhankar ; Ramasubramanian, Muthukumaran ; Gurung, Iksha ; Kaulfus, Aaron S. ; Priftis, George ; Cheng, Peiyang ; Gupta, Pavan ; Maskey, Manil ; Ramachandran, Rahul ; Christopher, Sundar ; Chung, Haeyong</creatorcontrib><description>PM2.5, particulate matter (PM) with a diameter less than or equal to 2.5 μm, is emitted from anthropogenic fuel combustion and forest fires. Due to their small size, PM2.5 can penetrate into respiratory systems and cause or exacerbate serious illness. The US Environmental Protection Agency (EPA) regulates the levels of surface PM2.5 but surface monitoring has spatial and temporal limitations. The Aerosol Optical Depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) missions and meteorological factors can be utilized as an alternative technique to estimate surface PM2.5 levels at a higher spatial and temporal resolution compared to surface monitors. Traditional estimation approaches rely on linear regression techniques and have limitations modeling the nonlinear relationship between the meteorological factors, AOD retrievals, and surface PM2.5. We compare different machine learning techniques and identify the best-suited model that can represent the nonlinearity between the factors affecting PM2.5 levels</description><language>eng</language><publisher>Marshall Space Flight Center</publisher><subject>Cybernetics, Artificial Intelligence And Robotics</subject><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20205011654$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Khatri, Manisha</creatorcontrib><creatorcontrib>Gahlot, Shubhankar</creatorcontrib><creatorcontrib>Ramasubramanian, Muthukumaran</creatorcontrib><creatorcontrib>Gurung, Iksha</creatorcontrib><creatorcontrib>Kaulfus, Aaron S.</creatorcontrib><creatorcontrib>Priftis, George</creatorcontrib><creatorcontrib>Cheng, Peiyang</creatorcontrib><creatorcontrib>Gupta, Pavan</creatorcontrib><creatorcontrib>Maskey, Manil</creatorcontrib><creatorcontrib>Ramachandran, Rahul</creatorcontrib><creatorcontrib>Christopher, Sundar</creatorcontrib><creatorcontrib>Chung, Haeyong</creatorcontrib><title>Application of Artificial Intelligence for Surface PM2.5 Estimations from Geostationary Satellite and Atmospheric Numerical Model Data</title><description>PM2.5, particulate matter (PM) with a diameter less than or equal to 2.5 μm, is emitted from anthropogenic fuel combustion and forest fires. Due to their small size, PM2.5 can penetrate into respiratory systems and cause or exacerbate serious illness. The US Environmental Protection Agency (EPA) regulates the levels of surface PM2.5 but surface monitoring has spatial and temporal limitations. The Aerosol Optical Depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) missions and meteorological factors can be utilized as an alternative technique to estimate surface PM2.5 levels at a higher spatial and temporal resolution compared to surface monitors. Traditional estimation approaches rely on linear regression techniques and have limitations modeling the nonlinear relationship between the meteorological factors, AOD retrievals, and surface PM2.5. We compare different machine learning techniques and identify the best-suited model that can represent the nonlinearity between the factors affecting PM2.5 levels</description><subject>Cybernetics, Artificial Intelligence And Robotics</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><recordtype>image</recordtype><sourceid>CYI</sourceid><recordid>eNqFjT0OgkAQhWksjHoDi7mABlDsieJPgTHBnkyWWZ1k2SW7Q-EFPLdI7K2-l_fy5U2jd951hhUKOwtOQ-6FNStGAxcrZAw_yCoC7TxUvdc45FuZrjMognA7egG0dy2cyAUZC_QvqHC0hQBtA7m0LnRP8qzg2rdfDg-la8jAAQXn0USjCbT4cRYtj8V9f15ZDFhb8aFO4zTO4iTZZdvNn_kDqvxGlg</recordid><creator>Khatri, Manisha</creator><creator>Gahlot, Shubhankar</creator><creator>Ramasubramanian, Muthukumaran</creator><creator>Gurung, Iksha</creator><creator>Kaulfus, Aaron S.</creator><creator>Priftis, George</creator><creator>Cheng, Peiyang</creator><creator>Gupta, Pavan</creator><creator>Maskey, Manil</creator><creator>Ramachandran, Rahul</creator><creator>Christopher, Sundar</creator><creator>Chung, Haeyong</creator><scope>CYE</scope><scope>CYI</scope></search><sort><title>Application of Artificial Intelligence for Surface PM2.5 Estimations from Geostationary Satellite and Atmospheric Numerical Model Data</title><author>Khatri, Manisha ; Gahlot, Shubhankar ; Ramasubramanian, Muthukumaran ; Gurung, Iksha ; Kaulfus, Aaron S. ; Priftis, George ; Cheng, Peiyang ; Gupta, Pavan ; Maskey, Manil ; Ramachandran, Rahul ; Christopher, Sundar ; Chung, Haeyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202050116543</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><topic>Cybernetics, Artificial Intelligence And Robotics</topic><toplevel>online_resources</toplevel><creatorcontrib>Khatri, Manisha</creatorcontrib><creatorcontrib>Gahlot, Shubhankar</creatorcontrib><creatorcontrib>Ramasubramanian, Muthukumaran</creatorcontrib><creatorcontrib>Gurung, Iksha</creatorcontrib><creatorcontrib>Kaulfus, Aaron S.</creatorcontrib><creatorcontrib>Priftis, George</creatorcontrib><creatorcontrib>Cheng, Peiyang</creatorcontrib><creatorcontrib>Gupta, Pavan</creatorcontrib><creatorcontrib>Maskey, Manil</creatorcontrib><creatorcontrib>Ramachandran, Rahul</creatorcontrib><creatorcontrib>Christopher, Sundar</creatorcontrib><creatorcontrib>Chung, Haeyong</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khatri, Manisha</au><au>Gahlot, Shubhankar</au><au>Ramasubramanian, Muthukumaran</au><au>Gurung, Iksha</au><au>Kaulfus, Aaron S.</au><au>Priftis, George</au><au>Cheng, Peiyang</au><au>Gupta, Pavan</au><au>Maskey, Manil</au><au>Ramachandran, Rahul</au><au>Christopher, Sundar</au><au>Chung, Haeyong</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Application of Artificial Intelligence for Surface PM2.5 Estimations from Geostationary Satellite and Atmospheric Numerical Model Data</title><abstract>PM2.5, particulate matter (PM) with a diameter less than or equal to 2.5 μm, is emitted from anthropogenic fuel combustion and forest fires. Due to their small size, PM2.5 can penetrate into respiratory systems and cause or exacerbate serious illness. The US Environmental Protection Agency (EPA) regulates the levels of surface PM2.5 but surface monitoring has spatial and temporal limitations. The Aerosol Optical Depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) missions and meteorological factors can be utilized as an alternative technique to estimate surface PM2.5 levels at a higher spatial and temporal resolution compared to surface monitors. Traditional estimation approaches rely on linear regression techniques and have limitations modeling the nonlinear relationship between the meteorological factors, AOD retrievals, and surface PM2.5. We compare different machine learning techniques and identify the best-suited model that can represent the nonlinearity between the factors affecting PM2.5 levels</abstract><cop>Marshall Space Flight Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20205011654
source NASA Technical Reports Server
subjects Cybernetics, Artificial Intelligence And Robotics
title Application of Artificial Intelligence for Surface PM2.5 Estimations from Geostationary Satellite and Atmospheric Numerical Model Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Khatri,%20Manisha&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20205011654%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true