Climate and air quality impacts due to mitigation of non-methane near-term climate forcers

It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Allen, Robert J, Turnock, Steven T., Nabat, Pierre, Neubauer, David, Lohmann, Ulrike, Olivié, Dirk, Michou, Martine, Oshima, Naga, Wu, Tongwen, Zhang, Jie, Takemura, Toshihiko, Schulz, Michael, Tsigaridis, Kostas, Bauer, Susanne E, Emmons, Louisa, Horowitz, Larry, Naik, Vaishali, Noije, Twan van, Bergman, Tommi, Lamarque, Jean-Francois, Zanis, Prodromos, Tegen, Ina, Westervelt, Daniel M., Sager, Philippe Le, Good, Peter, Shim, Sungbo, O’Connor, Fiona, Akritidis, Dimitris, Georgoulias, Aristeidis K., Deushi, Makoto, Sentman, Lori T., John, Jasmin G., Fujimori, Shinichiro, Collins, William J.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title
container_volume 20
creator Allen, Robert J
Turnock, Steven T.
Nabat, Pierre
Neubauer, David
Lohmann, Ulrike
Olivié, Dirk
Michou, Martine
Oshima, Naga
Wu, Tongwen
Zhang, Jie
Takemura, Toshihiko
Schulz, Michael
Tsigaridis, Kostas
Bauer, Susanne E
Emmons, Louisa
Horowitz, Larry
Naik, Vaishali
Noije, Twan van
Bergman, Tommi
Lamarque, Jean-Francois
Zanis, Prodromos
Tegen, Ina
Westervelt, Daniel M.
Sager, Philippe Le
Good, Peter
Shim, Sungbo
O’Connor, Fiona
Akritidis, Dimitris
Georgoulias, Aristeidis K.
Deushi, Makoto
Sentman, Lori T.
John, Jasmin G.
Fujimori, Shinichiro
Collins, William J.
description It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2.5) and ozone (O3) decrease by −2.2±0.32 µg m−3 and −4.6±0.88 ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0.25±0.12 K and 0.03±0.012 mm d−1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0.66±0.20 K and 0.03±0.02 mm d−1), south Asia (0.47±0.16 K and 0.17±0.09 mm d−1), and east Asia (0.46±0.20 K and 0.15±0.06 mm d−1). Relatively large warming and wetting of the Arctic also occur at 0.59±0.36 K and 0.04±0.02 mm d−1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reduction
doi_str_mv 10.5194/acp-20-9641-2020
format Report
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20205006444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20205006444</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202050064443</originalsourceid><addsrcrecordid>eNqFjrEKwjAQQLM4iLo7ONwPRFNNC52L4gc4uZQjvWqgudTkOvj3KnR3esODx1NqW5h9WdT2gG7UR6PryhZfHs1S3ZvBBxQC5A7QJ3hNOHh5gw8jOsnQTQQSIXjxDxQfGWIPHFkHkicyARMmLZQCuDnVx-Qo5bVa9Dhk2sxcqd3lfGuumjFjy5Jy-3sojamstac_-gNuGDwO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Climate and air quality impacts due to mitigation of non-methane near-term climate forcers</title><source>NASA Technical Reports Server</source><creator>Allen, Robert J ; Turnock, Steven T. ; Nabat, Pierre ; Neubauer, David ; Lohmann, Ulrike ; Olivié, Dirk ; Michou, Martine ; Oshima, Naga ; Wu, Tongwen ; Zhang, Jie ; Takemura, Toshihiko ; Schulz, Michael ; Tsigaridis, Kostas ; Bauer, Susanne E ; Emmons, Louisa ; Horowitz, Larry ; Naik, Vaishali ; Noije, Twan van ; Bergman, Tommi ; Lamarque, Jean-Francois ; Zanis, Prodromos ; Tegen, Ina ; Westervelt, Daniel M. ; Sager, Philippe Le ; Good, Peter ; Shim, Sungbo ; O’Connor, Fiona ; Akritidis, Dimitris ; Georgoulias, Aristeidis K. ; Deushi, Makoto ; Sentman, Lori T. ; John, Jasmin G. ; Fujimori, Shinichiro ; Collins, William J.</creator><creatorcontrib>Allen, Robert J ; Turnock, Steven T. ; Nabat, Pierre ; Neubauer, David ; Lohmann, Ulrike ; Olivié, Dirk ; Michou, Martine ; Oshima, Naga ; Wu, Tongwen ; Zhang, Jie ; Takemura, Toshihiko ; Schulz, Michael ; Tsigaridis, Kostas ; Bauer, Susanne E ; Emmons, Louisa ; Horowitz, Larry ; Naik, Vaishali ; Noije, Twan van ; Bergman, Tommi ; Lamarque, Jean-Francois ; Zanis, Prodromos ; Tegen, Ina ; Westervelt, Daniel M. ; Sager, Philippe Le ; Good, Peter ; Shim, Sungbo ; O’Connor, Fiona ; Akritidis, Dimitris ; Georgoulias, Aristeidis K. ; Deushi, Makoto ; Sentman, Lori T. ; John, Jasmin G. ; Fujimori, Shinichiro ; Collins, William J.</creatorcontrib><description>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2.5) and ozone (O3) decrease by −2.2±0.32 µg m−3 and −4.6±0.88 ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0.25±0.12 K and 0.03±0.012 mm d−1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0.66±0.20 K and 0.03±0.02 mm d−1), south Asia (0.47±0.16 K and 0.17±0.09 mm d−1), and east Asia (0.46±0.20 K and 0.15±0.06 mm d−1). Relatively large warming and wetting of the Arctic also occur at 0.59±0.36 K and 0.04±0.02 mm d−1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</description><identifier>DOI: 10.5194/acp-20-9641-2020</identifier><language>eng</language><publisher>Goddard Space Flight Center: Copernicus / European Geophysical Union</publisher><subject>Meteorology And Climatology</subject><creationdate>2020</creationdate><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8451-2411 ; 0000-0001-5328-819X ; 0000-0001-8885-3785 ; 0000-0002-4225-5074 ; 0000-0003-2325-6212 ; 0000-0003-3700-3232 ; 0000-0002-2859-6067 ; 0000-0003-1616-9719 ; 0000-0002-7419-0850 ; 0000-0002-8925-1011 ; 0000-0001-7823-8690 ; 0000-0003-0806-9961 ; 0000-0002-5148-5867 ; 0000-0003-4493-4158 ; 0000-0003-3104-5271 ; 0000-0001-5187-9121 ; 0000-0003-2696-277X ; 0000-0002-3533-5818 ; 0000-0002-9869-3946 ; 0000-0003-1954-5564 ; 0000-0002-0036-4627 ; 0000-0002-0373-3918 ; 0000-0002-6133-2231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,798,4478</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20205006444$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Allen, Robert J</creatorcontrib><creatorcontrib>Turnock, Steven T.</creatorcontrib><creatorcontrib>Nabat, Pierre</creatorcontrib><creatorcontrib>Neubauer, David</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Olivié, Dirk</creatorcontrib><creatorcontrib>Michou, Martine</creatorcontrib><creatorcontrib>Oshima, Naga</creatorcontrib><creatorcontrib>Wu, Tongwen</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Takemura, Toshihiko</creatorcontrib><creatorcontrib>Schulz, Michael</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Bauer, Susanne E</creatorcontrib><creatorcontrib>Emmons, Louisa</creatorcontrib><creatorcontrib>Horowitz, Larry</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>Noije, Twan van</creatorcontrib><creatorcontrib>Bergman, Tommi</creatorcontrib><creatorcontrib>Lamarque, Jean-Francois</creatorcontrib><creatorcontrib>Zanis, Prodromos</creatorcontrib><creatorcontrib>Tegen, Ina</creatorcontrib><creatorcontrib>Westervelt, Daniel M.</creatorcontrib><creatorcontrib>Sager, Philippe Le</creatorcontrib><creatorcontrib>Good, Peter</creatorcontrib><creatorcontrib>Shim, Sungbo</creatorcontrib><creatorcontrib>O’Connor, Fiona</creatorcontrib><creatorcontrib>Akritidis, Dimitris</creatorcontrib><creatorcontrib>Georgoulias, Aristeidis K.</creatorcontrib><creatorcontrib>Deushi, Makoto</creatorcontrib><creatorcontrib>Sentman, Lori T.</creatorcontrib><creatorcontrib>John, Jasmin G.</creatorcontrib><creatorcontrib>Fujimori, Shinichiro</creatorcontrib><creatorcontrib>Collins, William J.</creatorcontrib><title>Climate and air quality impacts due to mitigation of non-methane near-term climate forcers</title><description>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2.5) and ozone (O3) decrease by −2.2±0.32 µg m−3 and −4.6±0.88 ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0.25±0.12 K and 0.03±0.012 mm d−1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0.66±0.20 K and 0.03±0.02 mm d−1), south Asia (0.47±0.16 K and 0.17±0.09 mm d−1), and east Asia (0.46±0.20 K and 0.15±0.06 mm d−1). Relatively large warming and wetting of the Arctic also occur at 0.59±0.36 K and 0.04±0.02 mm d−1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</description><subject>Meteorology And Climatology</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2020</creationdate><recordtype>report</recordtype><sourceid>CYI</sourceid><recordid>eNqFjrEKwjAQQLM4iLo7ONwPRFNNC52L4gc4uZQjvWqgudTkOvj3KnR3esODx1NqW5h9WdT2gG7UR6PryhZfHs1S3ZvBBxQC5A7QJ3hNOHh5gw8jOsnQTQQSIXjxDxQfGWIPHFkHkicyARMmLZQCuDnVx-Qo5bVa9Dhk2sxcqd3lfGuumjFjy5Jy-3sojamstac_-gNuGDwO</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Allen, Robert J</creator><creator>Turnock, Steven T.</creator><creator>Nabat, Pierre</creator><creator>Neubauer, David</creator><creator>Lohmann, Ulrike</creator><creator>Olivié, Dirk</creator><creator>Michou, Martine</creator><creator>Oshima, Naga</creator><creator>Wu, Tongwen</creator><creator>Zhang, Jie</creator><creator>Takemura, Toshihiko</creator><creator>Schulz, Michael</creator><creator>Tsigaridis, Kostas</creator><creator>Bauer, Susanne E</creator><creator>Emmons, Louisa</creator><creator>Horowitz, Larry</creator><creator>Naik, Vaishali</creator><creator>Noije, Twan van</creator><creator>Bergman, Tommi</creator><creator>Lamarque, Jean-Francois</creator><creator>Zanis, Prodromos</creator><creator>Tegen, Ina</creator><creator>Westervelt, Daniel M.</creator><creator>Sager, Philippe Le</creator><creator>Good, Peter</creator><creator>Shim, Sungbo</creator><creator>O’Connor, Fiona</creator><creator>Akritidis, Dimitris</creator><creator>Georgoulias, Aristeidis K.</creator><creator>Deushi, Makoto</creator><creator>Sentman, Lori T.</creator><creator>John, Jasmin G.</creator><creator>Fujimori, Shinichiro</creator><creator>Collins, William J.</creator><general>Copernicus / European Geophysical Union</general><scope>CYE</scope><scope>CYI</scope><orcidid>https://orcid.org/0000-0002-8451-2411</orcidid><orcidid>https://orcid.org/0000-0001-5328-819X</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0002-4225-5074</orcidid><orcidid>https://orcid.org/0000-0003-2325-6212</orcidid><orcidid>https://orcid.org/0000-0003-3700-3232</orcidid><orcidid>https://orcid.org/0000-0002-2859-6067</orcidid><orcidid>https://orcid.org/0000-0003-1616-9719</orcidid><orcidid>https://orcid.org/0000-0002-7419-0850</orcidid><orcidid>https://orcid.org/0000-0002-8925-1011</orcidid><orcidid>https://orcid.org/0000-0001-7823-8690</orcidid><orcidid>https://orcid.org/0000-0003-0806-9961</orcidid><orcidid>https://orcid.org/0000-0002-5148-5867</orcidid><orcidid>https://orcid.org/0000-0003-4493-4158</orcidid><orcidid>https://orcid.org/0000-0003-3104-5271</orcidid><orcidid>https://orcid.org/0000-0001-5187-9121</orcidid><orcidid>https://orcid.org/0000-0003-2696-277X</orcidid><orcidid>https://orcid.org/0000-0002-3533-5818</orcidid><orcidid>https://orcid.org/0000-0002-9869-3946</orcidid><orcidid>https://orcid.org/0000-0003-1954-5564</orcidid><orcidid>https://orcid.org/0000-0002-0036-4627</orcidid><orcidid>https://orcid.org/0000-0002-0373-3918</orcidid><orcidid>https://orcid.org/0000-0002-6133-2231</orcidid></search><sort><creationdate>20200817</creationdate><title>Climate and air quality impacts due to mitigation of non-methane near-term climate forcers</title><author>Allen, Robert J ; Turnock, Steven T. ; Nabat, Pierre ; Neubauer, David ; Lohmann, Ulrike ; Olivié, Dirk ; Michou, Martine ; Oshima, Naga ; Wu, Tongwen ; Zhang, Jie ; Takemura, Toshihiko ; Schulz, Michael ; Tsigaridis, Kostas ; Bauer, Susanne E ; Emmons, Louisa ; Horowitz, Larry ; Naik, Vaishali ; Noije, Twan van ; Bergman, Tommi ; Lamarque, Jean-Francois ; Zanis, Prodromos ; Tegen, Ina ; Westervelt, Daniel M. ; Sager, Philippe Le ; Good, Peter ; Shim, Sungbo ; O’Connor, Fiona ; Akritidis, Dimitris ; Georgoulias, Aristeidis K. ; Deushi, Makoto ; Sentman, Lori T. ; John, Jasmin G. ; Fujimori, Shinichiro ; Collins, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202050064443</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Meteorology And Climatology</topic><toplevel>online_resources</toplevel><creatorcontrib>Allen, Robert J</creatorcontrib><creatorcontrib>Turnock, Steven T.</creatorcontrib><creatorcontrib>Nabat, Pierre</creatorcontrib><creatorcontrib>Neubauer, David</creatorcontrib><creatorcontrib>Lohmann, Ulrike</creatorcontrib><creatorcontrib>Olivié, Dirk</creatorcontrib><creatorcontrib>Michou, Martine</creatorcontrib><creatorcontrib>Oshima, Naga</creatorcontrib><creatorcontrib>Wu, Tongwen</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Takemura, Toshihiko</creatorcontrib><creatorcontrib>Schulz, Michael</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Bauer, Susanne E</creatorcontrib><creatorcontrib>Emmons, Louisa</creatorcontrib><creatorcontrib>Horowitz, Larry</creatorcontrib><creatorcontrib>Naik, Vaishali</creatorcontrib><creatorcontrib>Noije, Twan van</creatorcontrib><creatorcontrib>Bergman, Tommi</creatorcontrib><creatorcontrib>Lamarque, Jean-Francois</creatorcontrib><creatorcontrib>Zanis, Prodromos</creatorcontrib><creatorcontrib>Tegen, Ina</creatorcontrib><creatorcontrib>Westervelt, Daniel M.</creatorcontrib><creatorcontrib>Sager, Philippe Le</creatorcontrib><creatorcontrib>Good, Peter</creatorcontrib><creatorcontrib>Shim, Sungbo</creatorcontrib><creatorcontrib>O’Connor, Fiona</creatorcontrib><creatorcontrib>Akritidis, Dimitris</creatorcontrib><creatorcontrib>Georgoulias, Aristeidis K.</creatorcontrib><creatorcontrib>Deushi, Makoto</creatorcontrib><creatorcontrib>Sentman, Lori T.</creatorcontrib><creatorcontrib>John, Jasmin G.</creatorcontrib><creatorcontrib>Fujimori, Shinichiro</creatorcontrib><creatorcontrib>Collins, William J.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Allen, Robert J</au><au>Turnock, Steven T.</au><au>Nabat, Pierre</au><au>Neubauer, David</au><au>Lohmann, Ulrike</au><au>Olivié, Dirk</au><au>Michou, Martine</au><au>Oshima, Naga</au><au>Wu, Tongwen</au><au>Zhang, Jie</au><au>Takemura, Toshihiko</au><au>Schulz, Michael</au><au>Tsigaridis, Kostas</au><au>Bauer, Susanne E</au><au>Emmons, Louisa</au><au>Horowitz, Larry</au><au>Naik, Vaishali</au><au>Noije, Twan van</au><au>Bergman, Tommi</au><au>Lamarque, Jean-Francois</au><au>Zanis, Prodromos</au><au>Tegen, Ina</au><au>Westervelt, Daniel M.</au><au>Sager, Philippe Le</au><au>Good, Peter</au><au>Shim, Sungbo</au><au>O’Connor, Fiona</au><au>Akritidis, Dimitris</au><au>Georgoulias, Aristeidis K.</au><au>Deushi, Makoto</au><au>Sentman, Lori T.</au><au>John, Jasmin G.</au><au>Fujimori, Shinichiro</au><au>Collins, William J.</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Climate and air quality impacts due to mitigation of non-methane near-term climate forcers</btitle><date>2020-08-17</date><risdate>2020</risdate><volume>20</volume><issue>16</issue><abstract>It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015–2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry–climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with “weak” (SSP3-7.0) versus “strong” (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2.5) and ozone (O3) decrease by −2.2±0.32 µg m−3 and −4.6±0.88 ppb, respectively (changes quoted here are for the entire 2015–2055 time period; uncertainty represents the 95 % confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0.25±0.12 K and 0.03±0.012 mm d−1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0.66±0.20 K and 0.03±0.02 mm d−1), south Asia (0.47±0.16 K and 0.17±0.09 mm d−1), and east Asia (0.46±0.20 K and 0.15±0.06 mm d−1). Relatively large warming and wetting of the Arctic also occur at 0.59±0.36 K and 0.04±0.02 mm d−1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals.</abstract><cop>Goddard Space Flight Center</cop><pub>Copernicus / European Geophysical Union</pub><doi>10.5194/acp-20-9641-2020</doi><orcidid>https://orcid.org/0000-0002-8451-2411</orcidid><orcidid>https://orcid.org/0000-0001-5328-819X</orcidid><orcidid>https://orcid.org/0000-0001-8885-3785</orcidid><orcidid>https://orcid.org/0000-0002-4225-5074</orcidid><orcidid>https://orcid.org/0000-0003-2325-6212</orcidid><orcidid>https://orcid.org/0000-0003-3700-3232</orcidid><orcidid>https://orcid.org/0000-0002-2859-6067</orcidid><orcidid>https://orcid.org/0000-0003-1616-9719</orcidid><orcidid>https://orcid.org/0000-0002-7419-0850</orcidid><orcidid>https://orcid.org/0000-0002-8925-1011</orcidid><orcidid>https://orcid.org/0000-0001-7823-8690</orcidid><orcidid>https://orcid.org/0000-0003-0806-9961</orcidid><orcidid>https://orcid.org/0000-0002-5148-5867</orcidid><orcidid>https://orcid.org/0000-0003-4493-4158</orcidid><orcidid>https://orcid.org/0000-0003-3104-5271</orcidid><orcidid>https://orcid.org/0000-0001-5187-9121</orcidid><orcidid>https://orcid.org/0000-0003-2696-277X</orcidid><orcidid>https://orcid.org/0000-0002-3533-5818</orcidid><orcidid>https://orcid.org/0000-0002-9869-3946</orcidid><orcidid>https://orcid.org/0000-0003-1954-5564</orcidid><orcidid>https://orcid.org/0000-0002-0036-4627</orcidid><orcidid>https://orcid.org/0000-0002-0373-3918</orcidid><orcidid>https://orcid.org/0000-0002-6133-2231</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.5194/acp-20-9641-2020
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20205006444
source NASA Technical Reports Server
subjects Meteorology And Climatology
title Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Climate%20and%20air%20quality%20impacts%20due%20to%20mitigation%20of%20non-methane%20near-term%20climate%20forcers&rft.au=Allen,%20Robert%20J&rft.date=2020-08-17&rft.volume=20&rft.issue=16&rft_id=info:doi/10.5194/acp-20-9641-2020&rft_dat=%3Cnasa_CYI%3E20205006444%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true