Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-Wave Infrared Applications

A high-performance graphene-based HgCdTe detector technology is being developed for sensing over the mid-wave infrared (MWIR) band for NASA Earth Science, defense, and commercial applications. This technology involves the integration of graphene into HgCdTe photodetectors that combines the best of b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sood, Ashok K., Zeller, John W., Ghuman, Parminder S., Babu, Sachidananda R., Dhar, Nibir K., Ganguly, Samiran, Ghosh, Avik W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 11129
creator Sood, Ashok K.
Zeller, John W.
Ghuman, Parminder S.
Babu, Sachidananda R.
Dhar, Nibir K.
Ganguly, Samiran
Ghosh, Avik W.
description A high-performance graphene-based HgCdTe detector technology is being developed for sensing over the mid-wave infrared (MWIR) band for NASA Earth Science, defense, and commercial applications. This technology involves the integration of graphene into HgCdTe photodetectors that combines the best of both materials and allows for higher MWIR(2-5 m) detection performance compared to photodetectors using only HgCdTe material. The interfacial barrier between the HgCdTe-based absorber and the graphene layer reduces recombination of photogenerated carriers in the detector. The graphene layer also acts as high mobility channel that whisks away carriers before they recombine, further enhancing the detector performance. Likewise, HgCdTe has shown promise for the development of MWIR detectors with improvements in carrier mobility and lifetime. The room temperature operational capability of HgCdTe-based detectors and arrays can help minimize size, weight, power and cost for MWIR sensing applications such as remote sensing and earth observation, e.g., in smaller satellite platforms. The objective of this work is to demonstrate graphene-based HgCdTe room temperature MWIR detectors and arrays through modeling, material development, and device optimization. The primary driver for this technology development is the enablement of a scalable, low cost, low power, and small footprint infrared technology component that offers high performance, while opening doors for new earth observation measurement capabilities.
format Conference Proceeding
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20200001759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20200001759</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_202000017593</originalsourceid><addsrcrecordid>eNqFir0OgjAYABujifjzBg7fCzSpGCiMBlQcTBxIZCMNfAUMtKRtSHx7Gdy95Ya7BfGOcRxSHoTFknjM55zyKCzWZGPtmzE_CnjsEZnihL0eB1QOtISsa1r6RCO1GYSqEG5GjC0qpFmT1DlCig4rpw3kWLVK97r5wDzDo6vpS0wIdyWNMFjDeRz7rhKu08ruyEqK3uL-5y05XC95klElrCiVM7b0mc9mjjyIT3_yF9GwQZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-Wave Infrared Applications</title><source>NASA Technical Reports Server</source><creator>Sood, Ashok K. ; Zeller, John W. ; Ghuman, Parminder S. ; Babu, Sachidananda R. ; Dhar, Nibir K. ; Ganguly, Samiran ; Ghosh, Avik W.</creator><creatorcontrib>Sood, Ashok K. ; Zeller, John W. ; Ghuman, Parminder S. ; Babu, Sachidananda R. ; Dhar, Nibir K. ; Ganguly, Samiran ; Ghosh, Avik W.</creatorcontrib><description>A high-performance graphene-based HgCdTe detector technology is being developed for sensing over the mid-wave infrared (MWIR) band for NASA Earth Science, defense, and commercial applications. This technology involves the integration of graphene into HgCdTe photodetectors that combines the best of both materials and allows for higher MWIR(2-5 m) detection performance compared to photodetectors using only HgCdTe material. The interfacial barrier between the HgCdTe-based absorber and the graphene layer reduces recombination of photogenerated carriers in the detector. The graphene layer also acts as high mobility channel that whisks away carriers before they recombine, further enhancing the detector performance. Likewise, HgCdTe has shown promise for the development of MWIR detectors with improvements in carrier mobility and lifetime. The room temperature operational capability of HgCdTe-based detectors and arrays can help minimize size, weight, power and cost for MWIR sensing applications such as remote sensing and earth observation, e.g., in smaller satellite platforms. The objective of this work is to demonstrate graphene-based HgCdTe room temperature MWIR detectors and arrays through modeling, material development, and device optimization. The primary driver for this technology development is the enablement of a scalable, low cost, low power, and small footprint infrared technology component that offers high performance, while opening doors for new earth observation measurement capabilities.</description><identifier>ISSN: 0277-786X</identifier><identifier>EISSN: 1996-756X</identifier><language>eng</language><publisher>Goddard Space Flight Center: SPIE</publisher><subject>Space Sciences (General)</subject><ispartof>Proceedings of SPIE, the international society for optical engineering, 2020, Vol.11129</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,796,25118</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20200001759$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sood, Ashok K.</creatorcontrib><creatorcontrib>Zeller, John W.</creatorcontrib><creatorcontrib>Ghuman, Parminder S.</creatorcontrib><creatorcontrib>Babu, Sachidananda R.</creatorcontrib><creatorcontrib>Dhar, Nibir K.</creatorcontrib><creatorcontrib>Ganguly, Samiran</creatorcontrib><creatorcontrib>Ghosh, Avik W.</creatorcontrib><title>Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-Wave Infrared Applications</title><title>Proceedings of SPIE, the international society for optical engineering</title><description>A high-performance graphene-based HgCdTe detector technology is being developed for sensing over the mid-wave infrared (MWIR) band for NASA Earth Science, defense, and commercial applications. This technology involves the integration of graphene into HgCdTe photodetectors that combines the best of both materials and allows for higher MWIR(2-5 m) detection performance compared to photodetectors using only HgCdTe material. The interfacial barrier between the HgCdTe-based absorber and the graphene layer reduces recombination of photogenerated carriers in the detector. The graphene layer also acts as high mobility channel that whisks away carriers before they recombine, further enhancing the detector performance. Likewise, HgCdTe has shown promise for the development of MWIR detectors with improvements in carrier mobility and lifetime. The room temperature operational capability of HgCdTe-based detectors and arrays can help minimize size, weight, power and cost for MWIR sensing applications such as remote sensing and earth observation, e.g., in smaller satellite platforms. The objective of this work is to demonstrate graphene-based HgCdTe room temperature MWIR detectors and arrays through modeling, material development, and device optimization. The primary driver for this technology development is the enablement of a scalable, low cost, low power, and small footprint infrared technology component that offers high performance, while opening doors for new earth observation measurement capabilities.</description><subject>Space Sciences (General)</subject><issn>0277-786X</issn><issn>1996-756X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNqFir0OgjAYABujifjzBg7fCzSpGCiMBlQcTBxIZCMNfAUMtKRtSHx7Gdy95Ya7BfGOcRxSHoTFknjM55zyKCzWZGPtmzE_CnjsEZnihL0eB1QOtISsa1r6RCO1GYSqEG5GjC0qpFmT1DlCig4rpw3kWLVK97r5wDzDo6vpS0wIdyWNMFjDeRz7rhKu08ruyEqK3uL-5y05XC95klElrCiVM7b0mc9mjjyIT3_yF9GwQZg</recordid><startdate>20200823</startdate><enddate>20200823</enddate><creator>Sood, Ashok K.</creator><creator>Zeller, John W.</creator><creator>Ghuman, Parminder S.</creator><creator>Babu, Sachidananda R.</creator><creator>Dhar, Nibir K.</creator><creator>Ganguly, Samiran</creator><creator>Ghosh, Avik W.</creator><general>SPIE</general><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20200823</creationdate><title>Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-Wave Infrared Applications</title><author>Sood, Ashok K. ; Zeller, John W. ; Ghuman, Parminder S. ; Babu, Sachidananda R. ; Dhar, Nibir K. ; Ganguly, Samiran ; Ghosh, Avik W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_202000017593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Space Sciences (General)</topic><toplevel>online_resources</toplevel><creatorcontrib>Sood, Ashok K.</creatorcontrib><creatorcontrib>Zeller, John W.</creatorcontrib><creatorcontrib>Ghuman, Parminder S.</creatorcontrib><creatorcontrib>Babu, Sachidananda R.</creatorcontrib><creatorcontrib>Dhar, Nibir K.</creatorcontrib><creatorcontrib>Ganguly, Samiran</creatorcontrib><creatorcontrib>Ghosh, Avik W.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sood, Ashok K.</au><au>Zeller, John W.</au><au>Ghuman, Parminder S.</au><au>Babu, Sachidananda R.</au><au>Dhar, Nibir K.</au><au>Ganguly, Samiran</au><au>Ghosh, Avik W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-Wave Infrared Applications</atitle><btitle>Proceedings of SPIE, the international society for optical engineering</btitle><date>2020-08-23</date><risdate>2020</risdate><volume>11129</volume><issn>0277-786X</issn><eissn>1996-756X</eissn><abstract>A high-performance graphene-based HgCdTe detector technology is being developed for sensing over the mid-wave infrared (MWIR) band for NASA Earth Science, defense, and commercial applications. This technology involves the integration of graphene into HgCdTe photodetectors that combines the best of both materials and allows for higher MWIR(2-5 m) detection performance compared to photodetectors using only HgCdTe material. The interfacial barrier between the HgCdTe-based absorber and the graphene layer reduces recombination of photogenerated carriers in the detector. The graphene layer also acts as high mobility channel that whisks away carriers before they recombine, further enhancing the detector performance. Likewise, HgCdTe has shown promise for the development of MWIR detectors with improvements in carrier mobility and lifetime. The room temperature operational capability of HgCdTe-based detectors and arrays can help minimize size, weight, power and cost for MWIR sensing applications such as remote sensing and earth observation, e.g., in smaller satellite platforms. The objective of this work is to demonstrate graphene-based HgCdTe room temperature MWIR detectors and arrays through modeling, material development, and device optimization. The primary driver for this technology development is the enablement of a scalable, low cost, low power, and small footprint infrared technology component that offers high performance, while opening doors for new earth observation measurement capabilities.</abstract><cop>Goddard Space Flight Center</cop><pub>SPIE</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0277-786X
ispartof Proceedings of SPIE, the international society for optical engineering, 2020, Vol.11129
issn 0277-786X
1996-756X
language eng
recordid cdi_nasa_ntrs_20200001759
source NASA Technical Reports Server
subjects Space Sciences (General)
title Development of High-Performance Graphene-HgCdTe Detector Technology for Mid-Wave Infrared Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Development%20of%20High-Performance%20Graphene-HgCdTe%20Detector%20Technology%20for%20Mid-Wave%20Infrared%20Applications&rft.btitle=Proceedings%20of%20SPIE,%20the%20international%20society%20for%20optical%20engineering&rft.au=Sood,%20Ashok%20K.&rft.date=2020-08-23&rft.volume=11129&rft.issn=0277-786X&rft.eissn=1996-756X&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20200001759%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true