Pixel-Based Model For High Latitude Dust Detection
Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N,...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Bild |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Priftis, G. Freitag, B. Ramasubramanian, M. Gurung, I. Maskey, M. Ramachandran, R. |
description | Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N, >40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence. |
format | Image |
fullrecord | <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20190030822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20190030822</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_201900308223</originalsourceid><addsrcrecordid>eNrjZDAKyKxIzdF1SixOTVHwzU9JzVFwyy9S8MhMz1DwSSzJLClNSVVwKS0uUXBJLUlNLsnMz-NhYE1LzClO5YXS3Awybq4hzh66eYnFifF5JUXF8UYGhpYGBsYGFkZGxgSkAX4EJt4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Pixel-Based Model For High Latitude Dust Detection</title><source>NASA Technical Reports Server</source><creator>Priftis, G. ; Freitag, B. ; Ramasubramanian, M. ; Gurung, I. ; Maskey, M. ; Ramachandran, R.</creator><creatorcontrib>Priftis, G. ; Freitag, B. ; Ramasubramanian, M. ; Gurung, I. ; Maskey, M. ; Ramachandran, R.</creatorcontrib><description>Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N, >40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.</description><language>eng</language><publisher>Marshall Space Flight Center</publisher><subject>Earth Resources And Remote Sensing</subject><creationdate>2019</creationdate><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20190030822$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Priftis, G.</creatorcontrib><creatorcontrib>Freitag, B.</creatorcontrib><creatorcontrib>Ramasubramanian, M.</creatorcontrib><creatorcontrib>Gurung, I.</creatorcontrib><creatorcontrib>Maskey, M.</creatorcontrib><creatorcontrib>Ramachandran, R.</creatorcontrib><title>Pixel-Based Model For High Latitude Dust Detection</title><description>Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N, >40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.</description><subject>Earth Resources And Remote Sensing</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2019</creationdate><recordtype>image</recordtype><sourceid>CYI</sourceid><recordid>eNrjZDAKyKxIzdF1SixOTVHwzU9JzVFwyy9S8MhMz1DwSSzJLClNSVVwKS0uUXBJLUlNLsnMz-NhYE1LzClO5YXS3Awybq4hzh66eYnFifF5JUXF8UYGhpYGBsYGFkZGxgSkAX4EJt4</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Priftis, G.</creator><creator>Freitag, B.</creator><creator>Ramasubramanian, M.</creator><creator>Gurung, I.</creator><creator>Maskey, M.</creator><creator>Ramachandran, R.</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20190910</creationdate><title>Pixel-Based Model For High Latitude Dust Detection</title><author>Priftis, G. ; Freitag, B. ; Ramasubramanian, M. ; Gurung, I. ; Maskey, M. ; Ramachandran, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_201900308223</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Earth Resources And Remote Sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Priftis, G.</creatorcontrib><creatorcontrib>Freitag, B.</creatorcontrib><creatorcontrib>Ramasubramanian, M.</creatorcontrib><creatorcontrib>Gurung, I.</creatorcontrib><creatorcontrib>Maskey, M.</creatorcontrib><creatorcontrib>Ramachandran, R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Priftis, G.</au><au>Freitag, B.</au><au>Ramasubramanian, M.</au><au>Gurung, I.</au><au>Maskey, M.</au><au>Ramachandran, R.</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Pixel-Based Model For High Latitude Dust Detection</title><date>2019-09-10</date><risdate>2019</risdate><abstract>Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N, >40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.</abstract><cop>Marshall Space Flight Center</cop><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_nasa_ntrs_20190030822 |
source | NASA Technical Reports Server |
subjects | Earth Resources And Remote Sensing |
title | Pixel-Based Model For High Latitude Dust Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Priftis,%20G.&rft.date=2019-09-10&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20190030822%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |