Pixel-Based Model For High Latitude Dust Detection

Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Priftis, G., Freitag, B., Ramasubramanian, M., Gurung, I., Maskey, M., Ramachandran, R.
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Priftis, G.
Freitag, B.
Ramasubramanian, M.
Gurung, I.
Maskey, M.
Ramachandran, R.
description Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (>40°N, >40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.
format Image
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20190030822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20190030822</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_201900308223</originalsourceid><addsrcrecordid>eNrjZDAKyKxIzdF1SixOTVHwzU9JzVFwyy9S8MhMz1DwSSzJLClNSVVwKS0uUXBJLUlNLsnMz-NhYE1LzClO5YXS3Awybq4hzh66eYnFifF5JUXF8UYGhpYGBsYGFkZGxgSkAX4EJt4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Pixel-Based Model For High Latitude Dust Detection</title><source>NASA Technical Reports Server</source><creator>Priftis, G. ; Freitag, B. ; Ramasubramanian, M. ; Gurung, I. ; Maskey, M. ; Ramachandran, R.</creator><creatorcontrib>Priftis, G. ; Freitag, B. ; Ramasubramanian, M. ; Gurung, I. ; Maskey, M. ; Ramachandran, R.</creatorcontrib><description>Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (&gt;40°N, &gt;40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.</description><language>eng</language><publisher>Marshall Space Flight Center</publisher><subject>Earth Resources And Remote Sensing</subject><creationdate>2019</creationdate><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20190030822$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Priftis, G.</creatorcontrib><creatorcontrib>Freitag, B.</creatorcontrib><creatorcontrib>Ramasubramanian, M.</creatorcontrib><creatorcontrib>Gurung, I.</creatorcontrib><creatorcontrib>Maskey, M.</creatorcontrib><creatorcontrib>Ramachandran, R.</creatorcontrib><title>Pixel-Based Model For High Latitude Dust Detection</title><description>Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (&gt;40°N, &gt;40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.</description><subject>Earth Resources And Remote Sensing</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2019</creationdate><recordtype>image</recordtype><sourceid>CYI</sourceid><recordid>eNrjZDAKyKxIzdF1SixOTVHwzU9JzVFwyy9S8MhMz1DwSSzJLClNSVVwKS0uUXBJLUlNLsnMz-NhYE1LzClO5YXS3Awybq4hzh66eYnFifF5JUXF8UYGhpYGBsYGFkZGxgSkAX4EJt4</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Priftis, G.</creator><creator>Freitag, B.</creator><creator>Ramasubramanian, M.</creator><creator>Gurung, I.</creator><creator>Maskey, M.</creator><creator>Ramachandran, R.</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20190910</creationdate><title>Pixel-Based Model For High Latitude Dust Detection</title><author>Priftis, G. ; Freitag, B. ; Ramasubramanian, M. ; Gurung, I. ; Maskey, M. ; Ramachandran, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_201900308223</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Earth Resources And Remote Sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Priftis, G.</creatorcontrib><creatorcontrib>Freitag, B.</creatorcontrib><creatorcontrib>Ramasubramanian, M.</creatorcontrib><creatorcontrib>Gurung, I.</creatorcontrib><creatorcontrib>Maskey, M.</creatorcontrib><creatorcontrib>Ramachandran, R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Priftis, G.</au><au>Freitag, B.</au><au>Ramasubramanian, M.</au><au>Gurung, I.</au><au>Maskey, M.</au><au>Ramachandran, R.</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Pixel-Based Model For High Latitude Dust Detection</title><date>2019-09-10</date><risdate>2019</risdate><abstract>Dust has implications on the energy budget, ocean biodiversity, and economy at regional and global scales. Dust detection relies on spectral sensitivity at visible (RGB) and infrared wavelengths. Radiative properties of high latitude dust and the background surface albedo in these regions (&gt;40°N, &gt;40°S) complicate current dust detection methods. Leveraging supervised machine learning (ML) methods, we propose a new method accounting for regional differences of dust occurrence.</abstract><cop>Marshall Space Flight Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20190030822
source NASA Technical Reports Server
subjects Earth Resources And Remote Sensing
title Pixel-Based Model For High Latitude Dust Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Priftis,%20G.&rft.date=2019-09-10&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20190030822%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true