Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster'
Cubesats operating in deep space face challenges Earth-orbiting cubesats do not. 15 deep space cubesat 'prototypes' will be launched over the next two years including the two MarCO cubesats, the 2018 demonstration of dual communication system at Mars, and the 13 diverse cubesats being depl...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107690G-13 |
---|---|
container_issue | |
container_start_page | 107690G |
container_title | |
container_volume | 10769 |
creator | Clark, Pamela MacDowall, Robert Farrell, William Brambora, Cliff Lunsford, Al Hurford, Terry Folta, David Malphrus, Benjamin Grubb, Matt Wilzcewski, Sarah Bujold, Emily |
description | Cubesats operating in deep space face challenges Earth-orbiting cubesats do not. 15 deep space cubesat 'prototypes' will be launched over the next two years including the two MarCO cubesats, the 2018 demonstration of dual communication system at Mars, and the 13 diverse cubesats being deployed from the SLS EM1 mission within the next two years. Three of the EM1 cubesat missions, including the first deep space cubesat 'cluster', will be lunar orbiters with remote sensing instruments for lunar surface/regolith measurements. These include: Lunar Ice Cube, with its 1-4 micron broadband IR spectrometer, BIRCHES, to determine volatile distribution as a function of time of day; Lunar Flashlight, to confirm the presence of surface ice at the lunar poles, utilizing an active source (laser), and looking for absorption features in the returning signal; and LunaH-Map to characterize ice at or below the surface at the poles with a compact neutron spectrometer. In addition, the BIRCHES instrument on Lunar Ice Cube will provide the first demonstration of a microcryocooler (AIM/IRIS) in deep space. Although not originally required to do so, all will be delivering science data to the Planetary Data System, the first formal archiving effort for cubesats. 4 of the 20 recently NASA-sponsored (PSDS3) study groups for deep space cubesat/smallsat mission concepts were lunar mission concepts, most involving 12U cubesats. NASA SIMPLEX 2/SALMON 3 AO will create ongoing opportunities for low-cost missions as 'rides' on government space program or private sector vehicles as these become available. |
doi_str_mv | 10.1117/12.2320055 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20190001810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20190001810</sourcerecordid><originalsourceid>FETCH-LOGICAL-n330t-4330d1287aa1f7a8290dcdd082099be29d33262b27ba2c6b7bf5e13c5a7c8e1e3</originalsourceid><addsrcrecordid>eNp1kc1LAzEQxYMfYP24ePaQW0GozmTdzeZYWlsLRYUqiAghu5m1KzVdkiyCf72r7UEPXubB_B4PHo-xU4QLRJSXKC5EIgDSdIf1QEg5kHn2tMtOlMwxRcgEgsK9X-yAHYbwBiDyVKoee7k1sfXE1xU3zvI5hbB2oVPjHVle-fU7n7fOeD4riY_agn58cUl8UvsQ-Zio4YvGbGkwkfdHqzZE8v1jtl-ZVaCTrR6xx8n1w-hmML-bzkbD-cAlCcTBVXctilwag5U0uVBgS2shF6BUQULZJBGZKIQsjCizQhZVSpiUqZFlTkjJEXve5IamJt34dUlka_ca9P1ithhPEWSmdNfFRf1Rx2VVryjoz7r5w4c-1uWK7scT_fOAqW5s1YWf_xOOoL9H0Cj0doTOfLYxOxOMdtEHLQAVAGCOkHwBhl19yQ</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster'</title><source>NASA Technical Reports Server</source><creator>Clark, Pamela ; MacDowall, Robert ; Farrell, William ; Brambora, Cliff ; Lunsford, Al ; Hurford, Terry ; Folta, David ; Malphrus, Benjamin ; Grubb, Matt ; Wilzcewski, Sarah ; Bujold, Emily</creator><contributor>Norton, Charles D ; Pagano, Thomas S</contributor><creatorcontrib>Clark, Pamela ; MacDowall, Robert ; Farrell, William ; Brambora, Cliff ; Lunsford, Al ; Hurford, Terry ; Folta, David ; Malphrus, Benjamin ; Grubb, Matt ; Wilzcewski, Sarah ; Bujold, Emily ; Norton, Charles D ; Pagano, Thomas S</creatorcontrib><description>Cubesats operating in deep space face challenges Earth-orbiting cubesats do not. 15 deep space cubesat 'prototypes' will be launched over the next two years including the two MarCO cubesats, the 2018 demonstration of dual communication system at Mars, and the 13 diverse cubesats being deployed from the SLS EM1 mission within the next two years. Three of the EM1 cubesat missions, including the first deep space cubesat 'cluster', will be lunar orbiters with remote sensing instruments for lunar surface/regolith measurements. These include: Lunar Ice Cube, with its 1-4 micron broadband IR spectrometer, BIRCHES, to determine volatile distribution as a function of time of day; Lunar Flashlight, to confirm the presence of surface ice at the lunar poles, utilizing an active source (laser), and looking for absorption features in the returning signal; and LunaH-Map to characterize ice at or below the surface at the poles with a compact neutron spectrometer. In addition, the BIRCHES instrument on Lunar Ice Cube will provide the first demonstration of a microcryocooler (AIM/IRIS) in deep space. Although not originally required to do so, all will be delivering science data to the Planetary Data System, the first formal archiving effort for cubesats. 4 of the 20 recently NASA-sponsored (PSDS3) study groups for deep space cubesat/smallsat mission concepts were lunar mission concepts, most involving 12U cubesats. NASA SIMPLEX 2/SALMON 3 AO will create ongoing opportunities for low-cost missions as 'rides' on government space program or private sector vehicles as these become available.</description><identifier>ISSN: 0277-786X</identifier><identifier>ISBN: 9781510621091</identifier><identifier>ISBN: 1510621091</identifier><identifier>EISSN: 0277-786X</identifier><identifier>DOI: 10.1117/12.2320055</identifier><language>eng</language><publisher>Goddard Space Flight Center: Society of Photo-optical Instrumentation Engineers (SPIE)</publisher><subject>Lunar And Planetary Science And Exploration</subject><ispartof>Proceedings of SPIE, the international society for optical engineering, 2018, Vol.10769, p.107690G-107690G-13</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,800,25140</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20190001810$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><contributor>Norton, Charles D</contributor><contributor>Pagano, Thomas S</contributor><creatorcontrib>Clark, Pamela</creatorcontrib><creatorcontrib>MacDowall, Robert</creatorcontrib><creatorcontrib>Farrell, William</creatorcontrib><creatorcontrib>Brambora, Cliff</creatorcontrib><creatorcontrib>Lunsford, Al</creatorcontrib><creatorcontrib>Hurford, Terry</creatorcontrib><creatorcontrib>Folta, David</creatorcontrib><creatorcontrib>Malphrus, Benjamin</creatorcontrib><creatorcontrib>Grubb, Matt</creatorcontrib><creatorcontrib>Wilzcewski, Sarah</creatorcontrib><creatorcontrib>Bujold, Emily</creatorcontrib><title>Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster'</title><title>Proceedings of SPIE, the international society for optical engineering</title><description>Cubesats operating in deep space face challenges Earth-orbiting cubesats do not. 15 deep space cubesat 'prototypes' will be launched over the next two years including the two MarCO cubesats, the 2018 demonstration of dual communication system at Mars, and the 13 diverse cubesats being deployed from the SLS EM1 mission within the next two years. Three of the EM1 cubesat missions, including the first deep space cubesat 'cluster', will be lunar orbiters with remote sensing instruments for lunar surface/regolith measurements. These include: Lunar Ice Cube, with its 1-4 micron broadband IR spectrometer, BIRCHES, to determine volatile distribution as a function of time of day; Lunar Flashlight, to confirm the presence of surface ice at the lunar poles, utilizing an active source (laser), and looking for absorption features in the returning signal; and LunaH-Map to characterize ice at or below the surface at the poles with a compact neutron spectrometer. In addition, the BIRCHES instrument on Lunar Ice Cube will provide the first demonstration of a microcryocooler (AIM/IRIS) in deep space. Although not originally required to do so, all will be delivering science data to the Planetary Data System, the first formal archiving effort for cubesats. 4 of the 20 recently NASA-sponsored (PSDS3) study groups for deep space cubesat/smallsat mission concepts were lunar mission concepts, most involving 12U cubesats. NASA SIMPLEX 2/SALMON 3 AO will create ongoing opportunities for low-cost missions as 'rides' on government space program or private sector vehicles as these become available.</description><subject>Lunar And Planetary Science And Exploration</subject><issn>0277-786X</issn><issn>0277-786X</issn><isbn>9781510621091</isbn><isbn>1510621091</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNp1kc1LAzEQxYMfYP24ePaQW0GozmTdzeZYWlsLRYUqiAghu5m1KzVdkiyCf72r7UEPXubB_B4PHo-xU4QLRJSXKC5EIgDSdIf1QEg5kHn2tMtOlMwxRcgEgsK9X-yAHYbwBiDyVKoee7k1sfXE1xU3zvI5hbB2oVPjHVle-fU7n7fOeD4riY_agn58cUl8UvsQ-Zio4YvGbGkwkfdHqzZE8v1jtl-ZVaCTrR6xx8n1w-hmML-bzkbD-cAlCcTBVXctilwag5U0uVBgS2shF6BUQULZJBGZKIQsjCizQhZVSpiUqZFlTkjJEXve5IamJt34dUlka_ca9P1ithhPEWSmdNfFRf1Rx2VVryjoz7r5w4c-1uWK7scT_fOAqW5s1YWf_xOOoL9H0Cj0doTOfLYxOxOMdtEHLQAVAGCOkHwBhl19yQ</recordid><startdate>20181026</startdate><enddate>20181026</enddate><creator>Clark, Pamela</creator><creator>MacDowall, Robert</creator><creator>Farrell, William</creator><creator>Brambora, Cliff</creator><creator>Lunsford, Al</creator><creator>Hurford, Terry</creator><creator>Folta, David</creator><creator>Malphrus, Benjamin</creator><creator>Grubb, Matt</creator><creator>Wilzcewski, Sarah</creator><creator>Bujold, Emily</creator><general>Society of Photo-optical Instrumentation Engineers (SPIE)</general><general>SPIE</general><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20181026</creationdate><title>Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster'</title><author>Clark, Pamela ; MacDowall, Robert ; Farrell, William ; Brambora, Cliff ; Lunsford, Al ; Hurford, Terry ; Folta, David ; Malphrus, Benjamin ; Grubb, Matt ; Wilzcewski, Sarah ; Bujold, Emily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n330t-4330d1287aa1f7a8290dcdd082099be29d33262b27ba2c6b7bf5e13c5a7c8e1e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Lunar And Planetary Science And Exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Clark, Pamela</creatorcontrib><creatorcontrib>MacDowall, Robert</creatorcontrib><creatorcontrib>Farrell, William</creatorcontrib><creatorcontrib>Brambora, Cliff</creatorcontrib><creatorcontrib>Lunsford, Al</creatorcontrib><creatorcontrib>Hurford, Terry</creatorcontrib><creatorcontrib>Folta, David</creatorcontrib><creatorcontrib>Malphrus, Benjamin</creatorcontrib><creatorcontrib>Grubb, Matt</creatorcontrib><creatorcontrib>Wilzcewski, Sarah</creatorcontrib><creatorcontrib>Bujold, Emily</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Clark, Pamela</au><au>MacDowall, Robert</au><au>Farrell, William</au><au>Brambora, Cliff</au><au>Lunsford, Al</au><au>Hurford, Terry</au><au>Folta, David</au><au>Malphrus, Benjamin</au><au>Grubb, Matt</au><au>Wilzcewski, Sarah</au><au>Bujold, Emily</au><au>Norton, Charles D</au><au>Pagano, Thomas S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster'</atitle><btitle>Proceedings of SPIE, the international society for optical engineering</btitle><date>2018-10-26</date><risdate>2018</risdate><volume>10769</volume><spage>107690G</spage><epage>107690G-13</epage><pages>107690G-107690G-13</pages><issn>0277-786X</issn><eissn>0277-786X</eissn><isbn>9781510621091</isbn><isbn>1510621091</isbn><abstract>Cubesats operating in deep space face challenges Earth-orbiting cubesats do not. 15 deep space cubesat 'prototypes' will be launched over the next two years including the two MarCO cubesats, the 2018 demonstration of dual communication system at Mars, and the 13 diverse cubesats being deployed from the SLS EM1 mission within the next two years. Three of the EM1 cubesat missions, including the first deep space cubesat 'cluster', will be lunar orbiters with remote sensing instruments for lunar surface/regolith measurements. These include: Lunar Ice Cube, with its 1-4 micron broadband IR spectrometer, BIRCHES, to determine volatile distribution as a function of time of day; Lunar Flashlight, to confirm the presence of surface ice at the lunar poles, utilizing an active source (laser), and looking for absorption features in the returning signal; and LunaH-Map to characterize ice at or below the surface at the poles with a compact neutron spectrometer. In addition, the BIRCHES instrument on Lunar Ice Cube will provide the first demonstration of a microcryocooler (AIM/IRIS) in deep space. Although not originally required to do so, all will be delivering science data to the Planetary Data System, the first formal archiving effort for cubesats. 4 of the 20 recently NASA-sponsored (PSDS3) study groups for deep space cubesat/smallsat mission concepts were lunar mission concepts, most involving 12U cubesats. NASA SIMPLEX 2/SALMON 3 AO will create ongoing opportunities for low-cost missions as 'rides' on government space program or private sector vehicles as these become available.</abstract><cop>Goddard Space Flight Center</cop><pub>Society of Photo-optical Instrumentation Engineers (SPIE)</pub><doi>10.1117/12.2320055</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0277-786X |
ispartof | Proceedings of SPIE, the international society for optical engineering, 2018, Vol.10769, p.107690G-107690G-13 |
issn | 0277-786X 0277-786X |
language | eng |
recordid | cdi_nasa_ntrs_20190001810 |
source | NASA Technical Reports Server |
subjects | Lunar And Planetary Science And Exploration |
title | Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster' |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nature%20of%20and%20Lessons%20Learned%20from%20Lunar%20Ice%20Cube%20and%20the%20First%20Deep%20Space%20Cubesat%20'Cluster'&rft.btitle=Proceedings%20of%20SPIE,%20the%20international%20society%20for%20optical%20engineering&rft.au=Clark,%20Pamela&rft.date=2018-10-26&rft.volume=10769&rft.spage=107690G&rft.epage=107690G-13&rft.pages=107690G-107690G-13&rft.issn=0277-786X&rft.eissn=0277-786X&rft.isbn=9781510621091&rft.isbn_list=1510621091&rft_id=info:doi/10.1117/12.2320055&rft_dat=%3Cnasa_CYI%3E20190001810%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |