Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Nav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Winternitz, Luke B., Bamford, William A., Price, Samuel R., Carpenter, J. Russell, Long, Anne C., Farahmand, Mitra
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Winternitz, Luke B.
Bamford, William A.
Price, Samuel R.
Carpenter, J. Russell
Long, Anne C.
Farahmand, Mitra
description NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
format Conference Proceeding
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20160001162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20160001162</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_201600011623</originalsourceid><addsrcrecordid>eNqFjLsKwkAQRbexEPUPLKazUdiNsKmD-GgShNiHSZjEwc2uZNaAf28Ee6sL53DuXOHZhRodXINw5ODZd1C-JVIPBY7c4RdCVoeRILVbrTU8emjDAEVWZhuBHDtPMcjzTgM3kL9cZGnQEeQsMsVLNWvRCa1-u1Dr0_F2uOw8ClY-DlIl2tjp2Rib7P_oD4vIN5U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</title><source>NASA Technical Reports Server</source><creator>Winternitz, Luke B. ; Bamford, William A. ; Price, Samuel R. ; Carpenter, J. Russell ; Long, Anne C. ; Farahmand, Mitra</creator><creatorcontrib>Winternitz, Luke B. ; Bamford, William A. ; Price, Samuel R. ; Carpenter, J. Russell ; Long, Anne C. ; Farahmand, Mitra</creatorcontrib><description>NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.</description><language>eng</language><publisher>Goddard Space Flight Center</publisher><subject>Space Communications, Spacecraft Communications, Command And Tracking</subject><creationdate>2016</creationdate><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,780,800</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20160001162$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Winternitz, Luke B.</creatorcontrib><creatorcontrib>Bamford, William A.</creatorcontrib><creatorcontrib>Price, Samuel R.</creatorcontrib><creatorcontrib>Carpenter, J. Russell</creatorcontrib><creatorcontrib>Long, Anne C.</creatorcontrib><creatorcontrib>Farahmand, Mitra</creatorcontrib><title>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</title><description>NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.</description><subject>Space Communications, Spacecraft Communications, Command And Tracking</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNqFjLsKwkAQRbexEPUPLKazUdiNsKmD-GgShNiHSZjEwc2uZNaAf28Ee6sL53DuXOHZhRodXINw5ODZd1C-JVIPBY7c4RdCVoeRILVbrTU8emjDAEVWZhuBHDtPMcjzTgM3kL9cZGnQEeQsMsVLNWvRCa1-u1Dr0_F2uOw8ClY-DlIl2tjp2Rib7P_oD4vIN5U</recordid><startdate>20160205</startdate><enddate>20160205</enddate><creator>Winternitz, Luke B.</creator><creator>Bamford, William A.</creator><creator>Price, Samuel R.</creator><creator>Carpenter, J. Russell</creator><creator>Long, Anne C.</creator><creator>Farahmand, Mitra</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20160205</creationdate><title>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</title><author>Winternitz, Luke B. ; Bamford, William A. ; Price, Samuel R. ; Carpenter, J. Russell ; Long, Anne C. ; Farahmand, Mitra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_201600011623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Space Communications, Spacecraft Communications, Command And Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Winternitz, Luke B.</creatorcontrib><creatorcontrib>Bamford, William A.</creatorcontrib><creatorcontrib>Price, Samuel R.</creatorcontrib><creatorcontrib>Carpenter, J. Russell</creatorcontrib><creatorcontrib>Long, Anne C.</creatorcontrib><creatorcontrib>Farahmand, Mitra</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Winternitz, Luke B.</au><au>Bamford, William A.</au><au>Price, Samuel R.</au><au>Carpenter, J. Russell</au><au>Long, Anne C.</au><au>Farahmand, Mitra</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission</atitle><date>2016-02-05</date><risdate>2016</risdate><abstract>NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.</abstract><cop>Goddard Space Flight Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20160001162
source NASA Technical Reports Server
subjects Space Communications, Spacecraft Communications, Command And Tracking
title Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20Positioning%20System%20Navigation%20Above%2076,000%20km%20for%20NASA's%20Magnetospheric%20Multiscale%20Mission&rft.au=Winternitz,%20Luke%20B.&rft.date=2016-02-05&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20160001162%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true