3D Printing Multi-Functionality: Embedded RF Antennas and Components

Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shemelya, C. M., Zemba, M., Liang, M., Espalin, D., Kief, C., Xin, H., Wicker, R. B., MacDonald, E. W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.