Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows

Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Georgiadis, Nicholas J., Rumsey, Christopher L., Huang, George P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Georgiadis, Nicholas J.
Rumsey, Christopher L.
Huang, George P.
description Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa − omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.
format Conference Proceeding
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20150002106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20150002106</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_201500021063</originalsourceid><addsrcrecordid>eNqFyrsOgkAQQFEaC6P-gcX8AMmC0d5sJDRYGGJLFhhgkn2YmcXH36uJvdUtzl0m5oJ3EorkR6hnbmeLvkOoQo8WrsZSbyIFD0NgKGmc0sp0E5xn1yLD8Unycg4jUwc6uBujyPfWgf3HCxsesk4Wg7GCm19XybY41bpMvRHT-MjS5CrbK6XyTB12f_gNe4s5bA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows</title><source>NASA Technical Reports Server</source><creator>Georgiadis, Nicholas J. ; Rumsey, Christopher L. ; Huang, George P.</creator><creatorcontrib>Georgiadis, Nicholas J. ; Rumsey, Christopher L. ; Huang, George P.</creatorcontrib><description>Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa − omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.</description><language>eng</language><publisher>Glenn Research Center</publisher><subject>Aerodynamics</subject><creationdate>2015</creationdate><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20150002106$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Georgiadis, Nicholas J.</creatorcontrib><creatorcontrib>Rumsey, Christopher L.</creatorcontrib><creatorcontrib>Huang, George P.</creatorcontrib><title>Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows</title><description>Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa − omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.</description><subject>Aerodynamics</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNqFyrsOgkAQQFEaC6P-gcX8AMmC0d5sJDRYGGJLFhhgkn2YmcXH36uJvdUtzl0m5oJ3EorkR6hnbmeLvkOoQo8WrsZSbyIFD0NgKGmc0sp0E5xn1yLD8Unycg4jUwc6uBujyPfWgf3HCxsesk4Wg7GCm19XybY41bpMvRHT-MjS5CrbK6XyTB12f_gNe4s5bA</recordid><startdate>20150105</startdate><enddate>20150105</enddate><creator>Georgiadis, Nicholas J.</creator><creator>Rumsey, Christopher L.</creator><creator>Huang, George P.</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20150105</creationdate><title>Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows</title><author>Georgiadis, Nicholas J. ; Rumsey, Christopher L. ; Huang, George P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_201500021063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgiadis, Nicholas J.</creatorcontrib><creatorcontrib>Rumsey, Christopher L.</creatorcontrib><creatorcontrib>Huang, George P.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgiadis, Nicholas J.</au><au>Rumsey, Christopher L.</au><au>Huang, George P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows</atitle><date>2015-01-05</date><risdate>2015</risdate><abstract>Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa − omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.</abstract><cop>Glenn Research Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20150002106
source NASA Technical Reports Server
subjects Aerodynamics
title Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Revisiting%20Turbulence%20Model%20Validation%20for%20High-Mach%20Number%20Axisymmetric%20Compression%20Corner%20Flows&rft.au=Georgiadis,%20Nicholas%20J.&rft.date=2015-01-05&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20150002106%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true