High-Efficiency Multi-Junction Space Solar Development Utilizing Lattice Grading

Progress towards achieving a high one-sun air mass 0 (AM0) efficiency in a monolithic dual junction solar cell comprised of a 1.62 eV InGaP top cell and a 1.1 eV InGaAs bottom cell grown on buffered GaAs is reported. The performance of stand-alone 1.62 eV InGaP and 1.1 eV InGaAs cells is compared to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stan, Mark A., Weizer, Victor G., Pal, AnnaMaria, Garverick, Linda M., Khan, Osman, Sinharoy, Samar, Hoffman, Richard W., Jr, Jenkins, Phillip P., Scheiman, David A., Fatemi, Navid S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Stan, Mark A.
Weizer, Victor G.
Pal, AnnaMaria
Garverick, Linda M.
Khan, Osman
Sinharoy, Samar
Hoffman, Richard W., Jr
Jenkins, Phillip P.
Scheiman, David A.
Fatemi, Navid S.
description Progress towards achieving a high one-sun air mass 0 (AM0) efficiency in a monolithic dual junction solar cell comprised of a 1.62 eV InGaP top cell and a 1.1 eV InGaAs bottom cell grown on buffered GaAs is reported. The performance of stand-alone 1.62 eV InGaP and 1.1 eV InGaAs cells is compared to that of the dual junction cell. Projected AM0 efficiencies of 15.7% and 16.5% are expected for the 1.62 eV InGaP and 1.1 eV InGaAs cells grown on buffered GaAs. The dual junction cell has a projected one-sun AM0 conversion efficiency of 17%. The projected efficiencies are based upon the application of an optimized anti-reflective coating (ARC) to the as-grown cells. Quantum efficiency (QE) data obtained from the dual junction cell indicate that is is bottom cell current limited with the top cell generating 50% more current than the bottom cell. A comparison of the QE data for the stand-alone 1.1 eV InGaAs cell to that of the 1.1 eV InGaAs bottom cell in the tandem configuration indicates a degradation of the bottom cell conversion efficiency in the tandem configuration. The origin of this performance degradation is at present unknown. If the present limitation can be overcome, then a one-sun AM0 efficiency of 26% is achievable with the 1.62 eV/1.1 eV dual junction cell grown lattice-mismatched to GaAs.
format Conference Proceeding
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20050203761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20050203761</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_200502037613</originalsourceid><addsrcrecordid>eNrjZAjwyEzP0HVNS8tMzkzNS65U8C3NKcnU9SrNSy7JzM9TCC5ITE5VCM7PSSxScEktS83JL8hNzStRCC3JzMmsysxLV_BJLCnJBKpxL0pMAfJ5GFjTEnOKU3mhNDeDjJtriLOHbl5icWJ8XklRcbyRgYGpgZGBsbmZoTEBaQAdaDLO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High-Efficiency Multi-Junction Space Solar Development Utilizing Lattice Grading</title><source>NASA Technical Reports Server</source><creator>Stan, Mark A. ; Weizer, Victor G. ; Pal, AnnaMaria ; Garverick, Linda M. ; Khan, Osman ; Sinharoy, Samar ; Hoffman, Richard W., Jr ; Jenkins, Phillip P. ; Scheiman, David A. ; Fatemi, Navid S.</creator><creatorcontrib>Stan, Mark A. ; Weizer, Victor G. ; Pal, AnnaMaria ; Garverick, Linda M. ; Khan, Osman ; Sinharoy, Samar ; Hoffman, Richard W., Jr ; Jenkins, Phillip P. ; Scheiman, David A. ; Fatemi, Navid S.</creatorcontrib><description>Progress towards achieving a high one-sun air mass 0 (AM0) efficiency in a monolithic dual junction solar cell comprised of a 1.62 eV InGaP top cell and a 1.1 eV InGaAs bottom cell grown on buffered GaAs is reported. The performance of stand-alone 1.62 eV InGaP and 1.1 eV InGaAs cells is compared to that of the dual junction cell. Projected AM0 efficiencies of 15.7% and 16.5% are expected for the 1.62 eV InGaP and 1.1 eV InGaAs cells grown on buffered GaAs. The dual junction cell has a projected one-sun AM0 conversion efficiency of 17%. The projected efficiencies are based upon the application of an optimized anti-reflective coating (ARC) to the as-grown cells. Quantum efficiency (QE) data obtained from the dual junction cell indicate that is is bottom cell current limited with the top cell generating 50% more current than the bottom cell. A comparison of the QE data for the stand-alone 1.1 eV InGaAs cell to that of the 1.1 eV InGaAs bottom cell in the tandem configuration indicates a degradation of the bottom cell conversion efficiency in the tandem configuration. The origin of this performance degradation is at present unknown. If the present limitation can be overcome, then a one-sun AM0 efficiency of 26% is achievable with the 1.62 eV/1.1 eV dual junction cell grown lattice-mismatched to GaAs.</description><language>eng</language><publisher>Glenn Research Center</publisher><subject>Solid-State Physics</subject><creationdate>2005</creationdate><rights>Copyright Determination: GOV_PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,776,796</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20050203761$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stan, Mark A.</creatorcontrib><creatorcontrib>Weizer, Victor G.</creatorcontrib><creatorcontrib>Pal, AnnaMaria</creatorcontrib><creatorcontrib>Garverick, Linda M.</creatorcontrib><creatorcontrib>Khan, Osman</creatorcontrib><creatorcontrib>Sinharoy, Samar</creatorcontrib><creatorcontrib>Hoffman, Richard W., Jr</creatorcontrib><creatorcontrib>Jenkins, Phillip P.</creatorcontrib><creatorcontrib>Scheiman, David A.</creatorcontrib><creatorcontrib>Fatemi, Navid S.</creatorcontrib><title>High-Efficiency Multi-Junction Space Solar Development Utilizing Lattice Grading</title><description>Progress towards achieving a high one-sun air mass 0 (AM0) efficiency in a monolithic dual junction solar cell comprised of a 1.62 eV InGaP top cell and a 1.1 eV InGaAs bottom cell grown on buffered GaAs is reported. The performance of stand-alone 1.62 eV InGaP and 1.1 eV InGaAs cells is compared to that of the dual junction cell. Projected AM0 efficiencies of 15.7% and 16.5% are expected for the 1.62 eV InGaP and 1.1 eV InGaAs cells grown on buffered GaAs. The dual junction cell has a projected one-sun AM0 conversion efficiency of 17%. The projected efficiencies are based upon the application of an optimized anti-reflective coating (ARC) to the as-grown cells. Quantum efficiency (QE) data obtained from the dual junction cell indicate that is is bottom cell current limited with the top cell generating 50% more current than the bottom cell. A comparison of the QE data for the stand-alone 1.1 eV InGaAs cell to that of the 1.1 eV InGaAs bottom cell in the tandem configuration indicates a degradation of the bottom cell conversion efficiency in the tandem configuration. The origin of this performance degradation is at present unknown. If the present limitation can be overcome, then a one-sun AM0 efficiency of 26% is achievable with the 1.62 eV/1.1 eV dual junction cell grown lattice-mismatched to GaAs.</description><subject>Solid-State Physics</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><sourceid>CYI</sourceid><recordid>eNrjZAjwyEzP0HVNS8tMzkzNS65U8C3NKcnU9SrNSy7JzM9TCC5ITE5VCM7PSSxScEktS83JL8hNzStRCC3JzMmsysxLV_BJLCnJBKpxL0pMAfJ5GFjTEnOKU3mhNDeDjJtriLOHbl5icWJ8XklRcbyRgYGpgZGBsbmZoTEBaQAdaDLO</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Stan, Mark A.</creator><creator>Weizer, Victor G.</creator><creator>Pal, AnnaMaria</creator><creator>Garverick, Linda M.</creator><creator>Khan, Osman</creator><creator>Sinharoy, Samar</creator><creator>Hoffman, Richard W., Jr</creator><creator>Jenkins, Phillip P.</creator><creator>Scheiman, David A.</creator><creator>Fatemi, Navid S.</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20050501</creationdate><title>High-Efficiency Multi-Junction Space Solar Development Utilizing Lattice Grading</title><author>Stan, Mark A. ; Weizer, Victor G. ; Pal, AnnaMaria ; Garverick, Linda M. ; Khan, Osman ; Sinharoy, Samar ; Hoffman, Richard W., Jr ; Jenkins, Phillip P. ; Scheiman, David A. ; Fatemi, Navid S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_200502037613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Solid-State Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>Stan, Mark A.</creatorcontrib><creatorcontrib>Weizer, Victor G.</creatorcontrib><creatorcontrib>Pal, AnnaMaria</creatorcontrib><creatorcontrib>Garverick, Linda M.</creatorcontrib><creatorcontrib>Khan, Osman</creatorcontrib><creatorcontrib>Sinharoy, Samar</creatorcontrib><creatorcontrib>Hoffman, Richard W., Jr</creatorcontrib><creatorcontrib>Jenkins, Phillip P.</creatorcontrib><creatorcontrib>Scheiman, David A.</creatorcontrib><creatorcontrib>Fatemi, Navid S.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stan, Mark A.</au><au>Weizer, Victor G.</au><au>Pal, AnnaMaria</au><au>Garverick, Linda M.</au><au>Khan, Osman</au><au>Sinharoy, Samar</au><au>Hoffman, Richard W., Jr</au><au>Jenkins, Phillip P.</au><au>Scheiman, David A.</au><au>Fatemi, Navid S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High-Efficiency Multi-Junction Space Solar Development Utilizing Lattice Grading</atitle><date>2005-05-01</date><risdate>2005</risdate><abstract>Progress towards achieving a high one-sun air mass 0 (AM0) efficiency in a monolithic dual junction solar cell comprised of a 1.62 eV InGaP top cell and a 1.1 eV InGaAs bottom cell grown on buffered GaAs is reported. The performance of stand-alone 1.62 eV InGaP and 1.1 eV InGaAs cells is compared to that of the dual junction cell. Projected AM0 efficiencies of 15.7% and 16.5% are expected for the 1.62 eV InGaP and 1.1 eV InGaAs cells grown on buffered GaAs. The dual junction cell has a projected one-sun AM0 conversion efficiency of 17%. The projected efficiencies are based upon the application of an optimized anti-reflective coating (ARC) to the as-grown cells. Quantum efficiency (QE) data obtained from the dual junction cell indicate that is is bottom cell current limited with the top cell generating 50% more current than the bottom cell. A comparison of the QE data for the stand-alone 1.1 eV InGaAs cell to that of the 1.1 eV InGaAs bottom cell in the tandem configuration indicates a degradation of the bottom cell conversion efficiency in the tandem configuration. The origin of this performance degradation is at present unknown. If the present limitation can be overcome, then a one-sun AM0 efficiency of 26% is achievable with the 1.62 eV/1.1 eV dual junction cell grown lattice-mismatched to GaAs.</abstract><cop>Glenn Research Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20050203761
source NASA Technical Reports Server
subjects Solid-State Physics
title High-Efficiency Multi-Junction Space Solar Development Utilizing Lattice Grading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High-Efficiency%20Multi-Junction%20Space%20Solar%20Development%20Utilizing%20Lattice%20Grading&rft.au=Stan,%20Mark%20A.&rft.date=2005-05-01&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20050203761%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true