Contaminated Solar Array Handrail Samples Retrieved From Mir Analyzed

In January 1998 during the shuttle STS 89 mission, an eight-section Russian solar array panel was retrieved after more than 10 years of exposure to the orbital space environment on Mir. The array was deployed June 16, 1987, and removed on November 3, 1997. It had been actively used as a source of el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: deGroh, Kim K., McCue, Terry R.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In January 1998 during the shuttle STS 89 mission, an eight-section Russian solar array panel was retrieved after more than 10 years of exposure to the orbital space environment on Mir. The array was deployed June 16, 1987, and removed on November 3, 1997. It had been actively used as a source of electrical power for 8 years. This operational array had been located on the Mir core module, located directly above the Kvant-2 module. Its retrieval provided a unique opportunity to study the effects of the low-Earth-orbit environment on a functional solar array. The intact solar array underwent scientific inspections and preliminary tests by a joint team of U.S. and Russian investigators to evaluate the effects of long-term space exposure. Upon initial examination, significant contamination was observed over most components of the array. One panel, panel 8, was provided to the U.S. scientists for further evaluation. As part of the U.S. investigations, two solar array handrail samples from panel 8 were evaluated for contamination at the NASA Glenn Research Center at Lewis Field. One is a section of a rigid handrail, and the other is a section of woven fabric tape that was overwrapped around a flexible handhold. Both the flexible handhold woven fabric and the rigid handrail were significantly darkened after 10 years of space exposure. They were evaluated with optical microscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy. Solar absorptance and room-temperature emittance values also were obtained. The returned contaminated solar array segment is very similar in design to the solar arrays being supplied by the Russians for the International Space Station. Therefore, it was desirable to determine what the contaminants on various surfaces are and what the sources of the contamination were.